Math 2001 - Assignment 9

Due October 30, 2020
(1) $[1$, Chapter 6 , exercise 8$]$ Prove by contradiction: Let $a, b, c \in \mathbb{Z}$. If $a^{2}+b^{2}=c^{2}$, then a or b is even.

Proof by contradiction: Assume $a^{2}+b^{2}=c^{2}$ and a and b are odd. Then $a=2 x+1, b=2 y+1$ for some $x, y \in \mathbb{Z}$. So $c^{2}=(2 x+1)^{2}+(2 y+1)^{2}=4 x^{2}+4 x+1+4 y^{2}+4 y+1=2\left(2 x^{2}+2 x+2 y^{2}+2 y+1\right)$.

In particular c^{2} is even, which implies that c is even by Lemma 2 from class. So $c=2 z$ for some $z \in \mathbb{Z}$. The identity above yields

$$
4 z^{2}=2\left(2 x^{2}+2 x+2 y^{2}+2 y+1\right) .
$$

Further $2 z^{2}=2\left(x^{2}+x+y^{2}+y\right)+1$. Now $2 z^{2}$ is even whereas $2\left(x^{2}+x+y^{2}+y\right)+1$ is odd. This is a contradiction.

Hence our assumptions where false and the original statement is true.
(2) Prove for all $x, y \in \mathbb{R}$:

If x is rational and $x y$ is irrational, then y is irrational.

Proof by contradiction: Seeking a contradiction suppose that x is rational and $x y$ is irrational and y is rational.

Then $x=\frac{a}{b}$ and $y=\frac{c}{d}$ for $a, b, c, d \in \mathbb{Z}$. Hence $x y=\frac{a c}{b d}$ is rational contradicting the assumption that $x y$ is irrational.
(3) Compute:
(a) $3 \cdot 4 \bmod 7$
(b) $2-9 \bmod 11$
(c) $2^{6} \bmod 9$
(d) Solve for $x \in \mathbb{Z}: 13 x \equiv 1 \bmod 31$

Hint: First solve the equation $13 x+31 y=1$ using the extended Euclidean algorithm.

Solution:

(a) $3 \cdot 4 \bmod 7=5$
(b) $2-9 \bmod 11=4$
(c) $2^{6} \bmod 9=1$
(d) Determine $\operatorname{gcd}(13,31)$ with Bezout coefficients:

	31	13	
31	1	0	
13	0	1	$/ \cdot(-2)$
5	1	-2	$/ \cdot(-2)$
3	-2	5	$/ \cdot(-1)$
2	3	-7	$/ \cdot(-1)$
1	-5	12	

So $\operatorname{gcd}(31,13)=1=(-5) \cdot 31+12 \cdot 13$.
Modulo 31 we get that $x=12$ solves $13 x \equiv 1 \bmod 31$.
(4) Prove: Let $a, b, c, d \in \mathbb{Z}$ and $n \in \mathbb{N}$. If $a \equiv b \bmod n$ and $c \equiv d$ $\bmod n$, then $a+c \equiv b+d \bmod n$.

Proof: Assume $a \equiv b \bmod n$ and $c \equiv d \bmod n$, that is, $n \mid a-b$ and $n \mid c-d$. By Lemma 1 of the handout on Integers we then have n divides their sum $(a-b)+(c-d)$. Hence $n \mid(a+c)-(b+d)$ and $a+c \equiv b+d \bmod n$.
(5) Prove by induction that for every $q \in \mathbb{R}$ with $q \neq 1$ and for every $n \in \mathbb{N}_{0}$:

$$
1+q^{1}+q^{2}+\cdots+q^{n}=\frac{1-q^{n+1}}{1-q}
$$

Proof by induction on n :

Induction basis for $n=0: q^{0}=1$ holds.
Induction assumption: Assume the formula holds for a particular $k \in \mathbb{N}$.

Induction step: Show the formula holds for $n=k+1$.

$$
\begin{aligned}
\sum_{i=0}^{k+1} q^{i} & =\sum_{i=0}^{k} q^{i}+q^{k+1} \\
& =\frac{1-q^{k+1}}{1-q}+q^{k+1} \text { by induction assumption } \\
& =\frac{1-q^{k+1}}{1-q}+\frac{q^{k+1}-q^{k+2}}{1-q} \\
& =\frac{1-q^{k+2}}{1-q}
\end{aligned}
$$

Hence the induction step is proved and the formula holds for all $n \in \mathbb{N}$.
(6) $[1$, Chapter 10, exercise 2] Show by induction that for every $n \in \mathbb{N}$:

$$
\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Proof by induction on n :

Induction basis for $n=1$: $1^{2}=1$ holds.
Induction assumption: Assume the formula holds for a particular $n \in \mathbb{N}$.

Induction step: Show the formula holds for $n+1$.

$$
\begin{aligned}
\sum_{k=1}^{n+1} k^{2} & =\sum_{k=1}^{n} k^{2}+(n+1)^{2} \\
& =\frac{n(n+1)(2 n+1)}{6}+(n+1)^{2} \text { by induction assumption } \\
& =\frac{(n+1)[n(2 n+1)+6(n+1)]}{6} \\
& =\frac{\left.(n+1)\left[2 n^{2}+7 n+6\right)\right]}{6} \\
& =\frac{(n+1)(n+2)(2 n+3)}{6}
\end{aligned}
$$

Hence the induction step is proved and the formula holds for all $n \in \mathbb{N}$.

References

[1] Richard Hammack. The Book of Proof. Creative Commons, 3rd edition, 2018. Available for free: http://www.people.vcu.edu/~rhammack/BookOfProof/

