Math 2001 - Assignment 9

Due October 30, 2020

- (1) [1, Chapter 6, exercise 8] Prove by contradiction: Let $a,b,c\in\mathbb{Z}$. If $a^2+b^2=c^2$, then a or b is even.
- (2) Prove for all $x, y \in \mathbb{R}$: If x is rational and xy is irrational, then y is irrational.
- (3) Compute:
 - (a) $3 \cdot 4 \mod 7$
 - (b) $2 9 \mod 11$
 - (c) $2^6 \mod 9$
 - (d) Solve for $x \in \mathbb{Z}$: $13x \equiv 1 \mod 31$ Hint: First solve the equation 13x + 31y = 1 using the extended Euclidean algorithm.
- (4) Prove: Let $a, b, c, d \in \mathbb{Z}$ and $n \in \mathbb{N}$. If $a \equiv b \mod n$ and $c \equiv d \mod n$, then $a + c \equiv b + d \mod n$.
- (5) Prove by induction that for every $q \in \mathbb{R}$ with $q \neq 1$ and for every $n \in \mathbb{N}_0$:

$$1 + q^{1} + q^{2} + \dots + q^{n} = \frac{1 - q^{n+1}}{1 - q}$$

(6) [1, Chapter 10, exercise 2] Show by induction that for every $n \in \mathbb{N}$:

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

References

[1] Richard Hammack. The Book of Proof. Creative Commons, 3rd edition, 2018. Available for free: http://www.people.vcu.edu/~rhammack/BookOfProof/