Math 2001 - Assignment 9

Due October 30, 2020
(1) $[1$, Chapter 6 , exercise 8$]$ Prove by contradiction: Let $a, b, c \in \mathbb{Z}$. If $a^{2}+b^{2}=c^{2}$, then a or b is even.
(2) Prove for all $x, y \in \mathbb{R}$:

If x is rational and $x y$ is irrational, then y is irrational.
(3) Compute:
(a) $3 \cdot 4 \bmod 7$
(b) $2-9 \bmod 11$
(c) $2^{6} \bmod 9$
(d) Solve for $x \in \mathbb{Z}: 13 x \equiv 1 \bmod 31$

Hint: First solve the equation $13 x+31 y=1$ using the extended Euclidean algorithm.
(4) Prove: Let $a, b, c, d \in \mathbb{Z}$ and $n \in \mathbb{N}$. If $a \equiv b \bmod n$ and $c \equiv d$ $\bmod n$, then $a+c \equiv b+d \bmod n$.
(5) Prove by induction that for every $q \in \mathbb{R}$ with $q \neq 1$ and for every $n \in \mathbb{N}_{0}$:

$$
1+q^{1}+q^{2}+\cdots+q^{n}=\frac{1-q^{n+1}}{1-q}
$$

(6) $[1$, Chapter 10, exercise 2] Show by induction that for every $n \in \mathbb{N}$:

$$
\begin{gathered}
\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6} \\
\text { REFERENCES }
\end{gathered}
$$

[1] Richard Hammack. The Book of Proof. Creative Commons, 3rd edition, 2018. Available for free: http://www.people.vcu.edu/~rhammack/BookOfProof/

