Math 2001 - Assignment 8

Due October 23, 2020
(1) Compute $\operatorname{gcd}(a, b)$ and its Bezout coefficients using the Euclidean algorithm for the following numbers. Then find $1 \mathrm{~cm}(a, b)$.
(a) $a=85, b=25$
(b) $a=57, b=24$

Solution.

(a)

	85	25	
85	1	0	
25	0	1	$/ \cdot(-3)$
10	1	-3	$/ \cdot(-2)$
5	-2	7	$/ \cdot(-2)$
0			

Hence $\operatorname{gcd}(85,25)=5=-2 \cdot 85+5 \cdot 25$.
$\operatorname{lcm}(85,25)=\frac{85 \cdot 25}{\operatorname{gcd}(85,25)}=85 \cdot 5=425$.
(b)

	57	24	
57	1	0	
24	0	1	$/ \cdot(-2)$
9	1	-2	$/ \cdot(-2)$
6	-2	5	$/ \cdot(-1)$
3	3	-7	$/ \cdot(-2)$
0			

Hence $\operatorname{gcd}(57,24)=3=3 \cdot 57-7 \cdot 24$.
(2) Solve the following for $u, v \in \mathbb{Z}$:
(a) $33 u+10 v=-5$
(b) $44 u+10 v=5$

Solution. (a) Find the Bezout coefficients for $\operatorname{gcd}(33,10)$:

33	1	0	
10	0	1	$/ \cdot 3$
3	1	-3	$/ \cdot 3$
1	-3	10	
0			

Hence $33(-3)+10 \cdot 10=1$. Multiplication with -5 yields

$$
33 \cdot \underbrace{15}_{u}+10 \cdot \underbrace{(-50)}_{v}=-5
$$

(b) Since $\operatorname{gcd}(44,10)=2$ and 2 does not divide 5 , this equation has no solution.
(3) Let $a, b, c \in \mathbb{Z}$ with a, b not both 0 . Show that

$$
\exists x, y \in \mathbb{Z}: x \cdot a+y \cdot b=c \text { iff } \operatorname{gcd}(a, b) \mid c
$$

Hint: There are 2 implications to show:
(a) If $x \cdot a+y \cdot b=c$, then $\operatorname{gcd}(a, b) \mid c$.

Proof (direct). Assume $x \cdot a+y \cdot b=c$. Let $d=\operatorname{gcd}(a, b)$. Since d divides a and b, we have $m, n \in \mathbb{Z}$ such that $a=$ $m d, b=n d$. Then

$$
c=x \cdot a+y \cdot b=(x m+y n) d
$$

is a multiple of d. Hence d divides c.
(b) If $\operatorname{gcd}(a, b) \mid c$, then there are $x, y \in \mathbb{Z}$ such that $x \cdot a+y \cdot b=c$. Hint: Use Bezout's identity!
Proof (direct). Assume $\operatorname{gcd}(a, b) \mid c$, that is $c=n \operatorname{gcd}(a, b)$ for $n \in \mathbb{Z}$. By Bezout's identity we have $u, v \in \mathbb{Z}$ such that

$$
u a+v b=\operatorname{gcd}(a, b) .
$$

Multiplication by n yields

$$
\underbrace{n u}_{x} a+\underbrace{n v}_{y} b=n \operatorname{gcd}(a, b)=c .
$$

Hence we have found integers $x=n u, y=n v$ such that $x \cdot a+y \cdot b=c$.
(4) Two integers have the same parity if both are even or both are odd. Otherwise they have opposite parity.

Let $a, b \in \mathbb{Z}$. Show that if $a+b$ is even, then a, b have the same parity.
Hint: Use a contrapositive proof.
Proof (contrapositive). We show that if a, b have different parity, then $a+b$ is odd.

Assume that a, b have different parity (i.e., one is even, the other odd).

Case a even, b odd: Then $a=2 m$ and $b=2 n+1$ for some $m, n \in \mathbb{Z}$. Hence $a+b=2(m+n)+1$ is odd.

Case a odd, b even: Similar to the previous case.
(5) Show for all $a \in \mathbb{Z}$: If a^{2} is even, then a is even.

Hint: Which type of proof is the best to use?
Solution. Using a contrapositive proof allows us to start with an assumption on a. So that's what we choose.
Proof (contrapositive). Show: if a is odd, then a^{2} is odd.

Assume a is odd, that is, $a=2 n+1$ for some $n \in \mathbb{Z}$. Then

$$
a^{2}=(2 n+1)^{2}=4 n^{2}+4 n+1=2\left(2 n^{2}+2 n\right)+1
$$

is odd.
(6) Complete the following proof of Euclid's Lemma:

Let p be a prime, $a, b \in \mathbb{Z}$. If $p \mid a b$, then $p \mid a$ or $p \mid b$.
Proof: Assume $p \mid a b$ but $p \nmid a$. We will show $p \mid b$.
By Bezout's identity we have $u, v \in \mathbb{Z}$ such that

$$
\underline{u a+v p}=\operatorname{gcd}(a, p) .
$$

Since p is prime and $p \nmid a$, we have $\operatorname{gcd}(a, p)=\underline{1}$. Hence

$$
u a+v p=\underline{1} .
$$

Multiplying this equation by \underline{b} yields

$$
\underline{u a b+v p b}=b
$$

Since $p \mid \underline{u a b}$ and $p \mid \underline{v p b}$, we have a multiple of p on the left hand side of this equation. Thus $\underline{p \mid b}$.

