Math 2001 - Assignment 8

Due October 23, 2020
(1) Compute $\operatorname{gcd}(a, b)$ and its Bezout coefficients using the Euclidean algorithm for the following numbers. Then find $1 \mathrm{~cm}(a, b)$.
(a) $a=85, b=25$
(b) $a=57, b=24$
(2) Solve the following for $u, v \in \mathbb{Z}$:
(a) $33 u+10 v=-5$
(b) $44 u+10 v=5$
(3) Let $a, b, c \in \mathbb{Z}$ with a, b not both 0 . Show that

$$
\exists x, y \in \mathbb{Z}: x \cdot a+y \cdot b=c \text { iff } \operatorname{gcd}(a, b) \mid c
$$

Hint: There are 2 implications to show:
(a) If $x \cdot a+y \cdot b=c$, then $\operatorname{gcd}(a, b) \mid c$.
(b) If $\operatorname{gcd}(a, b) \mid c$, then there are $x, y \in \mathbb{Z}$ such that $x \cdot a+y \cdot b=c$.

Use Bezout's identity!
(4) Two integers have the same parity if both are even or both are odd. Otherwise they have opposite parity.

Let $a, b \in \mathbb{Z}$. Show that if $a+b$ is even, then a, b have the same parity.
Hint: Use a contrapositive proof.
(5) Show for all $a \in \mathbb{Z}$: If a^{2} is even, then a is even.

Hint: Which type of proof is the best to use?
(6) Complete the following proof of Euclid's Lemma:

Let p be a prime, $a, b \in \mathbb{Z}$. If $p \mid a b$, then $p \mid a$ or $p \mid b$.
Proof: Assume \qquad but $p \nmid a$. We will show $p \mid b$.
By Bezout's identity we have $u, v \in \mathbb{Z}$ such that

$$
\ldots=\operatorname{gcd}(a, p)
$$

Since p is \qquad and $p \nmid a$, we have $\operatorname{gcd}(a, p)=$ \qquad .
Hence

$$
u a+v p=
$$

\qquad .
Multiplying this equation by \qquad yields

$$
=b
$$

Since $p \mid$ \qquad and p \qquad , we have a multiple of p on the left hand side of this equation. Thus \qquad -

Please hand in this sheet of paper with your solution of 6 .

