Math 2001 - Assignment 8

Due October 23, 2020

- (1) Compute gcd(a, b) and its Bezout coefficients using the Euclidean algorithm for the following numbers. Then find lcm(a, b). (a) a = 85, b = 25(b) a = 57, b = 24
- (2) Solve the following for $u, v \in \mathbb{Z}$: (a) 33u + 10v = -5(b) 44u + 10v = 5
- (3) Let $a, b, c \in \mathbb{Z}$ with a, b not both 0. Show that

$$\exists x, y \in \mathbb{Z} \colon x \cdot a + y \cdot b = c \text{ iff } \gcd(a, b) | c.$$

Hint: There are 2 implications to show:

(a) If $x \cdot a + y \cdot b = c$, then gcd(a, b)|c.

- (b) If gcd(a, b)|c, then there are $x, y \in \mathbb{Z}$ such that $x \cdot a + y \cdot b = c$. Use Bezout's identity!
- (4) Two integers have the same parity if both are even or both are odd. Otherwise they have opposite parity. Let $a, b \in \mathbb{Z}$. Show that if a + b is even, then a, b have the

same parity.

Hint: Use a contrapositive proof.

- (5) Show for all $a \in \mathbb{Z}$: If a^2 is even, then a is even. Hint: Which type of proof is the best to use?
- (6) Complete the following proof of **Euclid's Lemma**: Let p be a prime, $a, b \in \mathbb{Z}$. If p|ab, then p|a or p|b.

Proof: Assume _____ but $p \not\mid a$. We will show p|b. By Bezout's identity we have $u, v \in \mathbb{Z}$ such that

 $\underline{\qquad} = \gcd(a, p).$ Since p is _____ and p $\not\mid a$, we have $\gcd(a, p) = ____.$ Hence

$$ua + vp = _$$

Multiplying this equation by _____ yields

_____ = b

Since p| and p|, we have a multiple of p on the left hand side of this equation. Thus _____ \square

Please hand in this sheet of paper with your solution of 6.