Math 2001 - Assignment 5

Due October 2, 2020
Problems 1-3 are review material for the first midterm on Sets and Logic September 30. So you should solve them before Wednesday!
(1) Simplify:
(a) $\bigcup_{i=0}^{4}[i, 2 i+1]$
(b) $\bigcap_{n \in \mathbb{N}}\{x \in \mathbb{Z}: x \geq n\}$
(c) $\bigcup_{x \in[0,1]}\{x\} \times[1,2]$
(d) $\bigcup_{x \in[0,1]}\{x\} \times[0, x]$
(2) (a) Is it true that for all statements P, Q, R :

$$
(P \Rightarrow Q) \wedge P=Q
$$

Prove it or give a counter-example.
(b) Show the distributive law $P \wedge(Q \vee R)=(P \wedge Q) \vee(P \wedge R)$.
(3) Write using quantifiers and logical operations. Is the statement true? Give its negation.
(a) The square of any real number is non-negative.
(b) There exists an integer x such that $x^{y}=x$ for all integers y.
(c) For all reals x and y we have that $x y=0$ implies $x=0$.
(4) How many lists of length 4 are there with entries from $\mathrm{A}, \ldots, \mathrm{Z}$ if
(a) repetition is allowed,
(b) repetition is not allowed,
(c) repetition is not allowed and the list must contain A ,
(d) repetition is allowed and the list must contain A.
(5) $[1$, Section 3.3]: Exercise 2
(6) How many standard Colorado license plates (3 numbers followed by 3 letters) have at least one number or letter repeated?

References

[1] Richard Hammack. The Book of Proof. Creative Commons, 3rd edition, 2018. Available for free: http://www.people.vcu.edu/~rhammack/BookOfProof/

