Math 2001 - Assignment 4

Due February 14, 2018
(1) (a) How many different truthtables (Boolean functions) are there for 2 statements x_{1}, x_{2} ? How many for k statements x_{1}, \ldots, x_{k} ?
(b) Let $f\left(x_{1}, x_{2}, x_{3}\right)$ be a Boolean function that is true for the following assignments and false otherwise.

x_{1}	x_{2}	x_{3}	$f\left(x_{1}, x_{2}, x_{3}\right)$
T	T	F	T
T	F	T	T
F	T	T	T

Write an expression for $f\left(x_{1}, x_{2}, x_{3}\right)$ using only \wedge, \vee, \sim.

Solution

(a) A truthtable for 2 statements x_{1}, x_{2} has $2^{2}=4$ rows. For each row we can choose either true or false. Hence we have 2^{4} options to make a truthtable.
A truthtable for k statements x_{1}, \ldots, x_{k} has 2^{k} rows. Hence there are $2^{2^{k}}$ such tables.
(b) $f\left(x_{1}, x_{2}, x_{3}\right)$ and $\left(x_{1} \wedge x_{2} \wedge \sim x_{3}\right) \vee\left(x_{1} \wedge \sim x_{2} \wedge x_{3}\right) \vee\left(\sim x_{1} \wedge x_{2} \wedge x_{3}\right)$ are true at exactly the same assignments. Hence they are equal.
(2) [1, Section 2.7]: Exercises $4,6,7,9,10$. Also give the negation of the corresponding statements.

Solution:

4. For all elements X in the powerset of \mathbb{N}, we have that X is a subset of \mathbb{R}.

Every subset of \mathbb{N} is a subset of \mathbb{R}.
True since $\mathbb{N} \subseteq \mathbb{R}$
Negation: $\exists X \in P(\mathbb{N}), X \nsubseteq \mathbb{R}$
6. There exists a natural number n such that every subset of \mathbb{N} has less than n elements.

False, $\{1, \ldots, n\}$ is a subset with n elements
Negation: $\forall n \in \mathbb{N} \exists X \in P(\mathbb{N}),|X| \geq n$
7. For every subset X of \mathbb{N} there exists an integer n such that X has size n.

False, $X=\mathbb{N}$ is a subset of \mathbb{N} of infinite size.
Negation: $\exists X \subseteq \mathbb{N} \forall n \in \mathbb{Z}:|X| \neq n$
9. For every integer n there exists an integer m such that $m=n+5$.

True, $m=n+5$ is the integer we are looking for.
Negation: $\exists n \in \mathbb{Z} \forall m \in \mathbb{Z}: m \neq n+5$
10. There exists an integer m for every n such that $m=n+5$.

False, the same number m cannot work for $n=0$ and $n=1$.
Negation: $\forall m \in \mathbb{Z} \forall \exists n \in \mathbb{Z}: m \neq n+5$
(3) Formulate the following sentences using quantifiers and logical operations. Are they true? Negate them.
(a) For all integers n we have that $n(n+1)$ is even.

Solution $\forall n \in \mathbb{Z} n(n+1)$ is even.
True because one of n or $n+1$ is even.
Negation: $\exists n \in \mathbb{Z} n(n+1)$ is odd.
(b) There exists a real number z such that $x+z=x$ for every real x.

Solution $\exists z \in \mathbb{R} \forall x \in \mathbb{R} x+z=x$
True for $z=0$.
Negation: $\forall z \in \mathbb{R} \exists x \in \mathbb{R} x+z \neq z$
(c) Every real number is smaller than some integer.

Solution $\forall x \in \mathbb{R} \exists z \in \mathbb{Z} x<z$
True.
Negation: $\exists x \in \mathbb{R} \forall x \in \mathbb{Z} x \geq z$
(4) Negate the following sentences. Are they true?
(a) If x^{2} is rational, then so is x.

Solution $x^{2} \in \mathbb{Q} \Rightarrow x \in \mathbb{Q}$.
False, e.g, $2 \in \mathbb{Q}$ and $\sqrt{2} \notin Q$
Negation: $x^{2} \in \mathbb{Q}$ and $x \notin \mathbb{Q}$.
(b) $x y=0$ iff $x=0$ or $y=0$

True, Negation $x y \neq 0$ iff $x=0$ or $y=0$
$x y=0$ iff $x \neq 0$ and $y \neq 0$
(c) The derivative of a polynomial function f is 0 iff f is constant.

True, Negation: The derivative of a polynomial function f is 0 iff f is not constant.
(d) $\exists x \in \mathbb{R}: x^{2}=-1$

False, Negation: $\forall x \in \mathbb{R}: x^{2} \neq-1$
(e) $\forall r \in \mathbb{R}: \sin (r \pi)=0 \Leftrightarrow r$ is an integer

Negation: $\exists r \in \mathbb{R}: \sin (r \pi)=0$ iff r is not an integer
(5) True or false? Give a proof or a counter-example:
(a) $\forall x \in \mathbb{R} \forall y \in \mathbb{R} x+y=1$

False, counter-example: $x=y=0$
(b) $\forall x \in \mathbb{R} \exists y \in \mathbb{R} x+y=1$

True: for $x \in \mathbb{R}$ we have $y=1-x$ such that $x+y=1$
(c) $\exists x \in \mathbb{R} \forall y \in \mathbb{R} x+y=1$

False: Suppose we have such a fixed $x \in \mathbb{R}$. Then for $y=-x$ we'd have $x+y=0 \neq 1$. Hence there cannot be a single x that makes $x+y=1$ true for all $y \in \mathbb{R}$.
(d) $\exists x \in \mathbb{R} \exists y \in \mathbb{R} x+y=1$

True: e.g. $x=0, y=1$
(6) Write as complete English sentences. True or false? Negate:
(a) $\forall a \in \mathbb{R} \exists b \in \mathbb{R} \forall c \in \mathbb{R}: a<b \Rightarrow c<b$

Solution: For all $a \in \mathbb{R}$ there exists $b \in \mathbb{R}$ such that for all $c \in \mathbb{R}$, if $a<b$ then $c<b$.
True: Let $a \in \mathbb{R}$ arbitrary. Next choose $b \in \mathbb{R}$ such that $a \nless b$, say $b=a$. Then $\forall c \in \mathbb{R}: a<b \Rightarrow c<b$ is true. (Note that by the choice of b, the assumption $a<b$ of the implication is false. Hence FALSE $\Rightarrow c<b$ is true.)
Negation: $\exists a \in \mathbb{R} \forall b \in \mathbb{R} \exists c \in \mathbb{R}: a<b \wedge b \leq c$.

Note that the negation is clearly false. Hence again the original statement must be true!
(b) \forall set $A \forall$ set $B \exists \operatorname{set} C: A \cup B=C$.

Solution: For all sets A and B there exists a set C that is the union of A and B.
True by Axiom of Unions in Zermelo-Fraenkel Set Theory.
Negation: \exists set $A \exists$ set $B \forall$ set $C: A \cup B \neq C$.
There exist sets A and B whose union is not a set.
(c) $\forall x, y \in \mathbb{R} \forall \varepsilon>0 \exists \delta>0:|x-y|<\varepsilon \Rightarrow|2 x-2 y|<\delta$

Solution: For all reals x, y and every $\epsilon>0$ there exists a $\delta>0$ such that $|x-y|<\varepsilon$ implies $|2 x-2 y|<\delta$.
True for $\delta=2 \varepsilon$.
Negation: $\exists x, y \in \mathbb{R} \exists \varepsilon>0 \forall \delta>0:|x-y|<\varepsilon \wedge|2 x-2 y| \geq \delta$.

References

[1] Richard Hammack. The Book of Proof. Creative Commons, 2nd edition, 2013. Available for free: http://www.people.vcu.edu/~rhammack/BookOfProof/

