Math 2001 - Assignment 4

Due February 14, 2018

- (1) (a) How many different truthtables (Boolean functions) are there for 2 statements x_1, x_2 ? How many for k statements x_1, \ldots, x_k ?
 - (b) Let $f(x_1, x_2, x_3)$ be a Boolean function that is true for the following assignments and false otherwise.

Write an expression for $f(x_1, x_2, x_3)$ using only \land, \lor, \sim .

Solution

(a) A truthtable for 2 statements x_1, x_2 has $2^2 = 4$ rows. For each row we can choose either true or false. Hence we have 2^4 options to make a truthtable.

A truthtable for k statements x_1, \ldots, x_k has 2^k rows. Hence there are 2^{2^k} such tables.

- (b) $f(x_1, x_2, x_3)$ and $(x_1 \wedge x_2 \wedge \sim x_3) \vee (x_1 \wedge \sim x_2 \wedge x_3) \vee (\sim x_1 \wedge x_2 \wedge x_3)$ are true at exactly the same assignments. Hence they are equal.
- (2) [1, Section 2.7]: Exercises 4,6,7,9,10. Also give the negation of the corresponding statements.

Solution:

4. For all elements X in the powerset of \mathbb{N} , we have that X is a subset of \mathbb{R} . Every subset of \mathbb{N} is a subset of \mathbb{R} .

True since $\mathbb{N} \subset \mathbb{R}$

Negation: $\exists X \in P(\mathbb{N}), X \not\subseteq \mathbb{R}$

6. There exists a natural number n such that every subset of \mathbb{N} has less than n elements.

False, $\{1, \ldots, n\}$ is a subset with n elements Negation: $\forall n \in \mathbb{N} \exists X \in P(\mathbb{N}), |X| \ge n$ 7. For every subset X of \mathbb{N} there exists an integer n such that X has size n. False, $X = \mathbb{N}$ is a subset of \mathbb{N} of infinite size. Negation: $\exists X \subseteq \mathbb{N} \ \forall n \in \mathbb{Z} : |X| \ne n$ 9. For every integer n there exists an integer m such that m = n + 5. True, m = n + 5 is the integer we are looking for. Negation: $\exists n \in \mathbb{Z} \forall m \in \mathbb{Z} : m \ne n + 5$ 10. There exists an integer m for every n such that m = n + 5. False, the same number m cannot work for n = 0 and n = 1. Negation: $\forall m \in \mathbb{Z} \forall \exists n \in \mathbb{Z} : m \ne n + 5$

(3) Formulate the following sentences using quantifiers and logical operations. Are they true? Negate them.

(a) For all integers n we have that n(n+1) is even. **Solution** $\forall n \in \mathbb{Z}$ n(n+1) is even. True because one of n or n+1 is even. Negation: $\exists n \in \mathbb{Z} \ n(n+1)$ is odd. (b) There exists a real number z such that x + z = x for every real x. Solution $\exists z \in \mathbb{R} \forall x \in \mathbb{R} \ x + z = x$ True for z = 0. Negation: $\forall z \in \mathbb{R} \ \exists x \in \mathbb{R} \ x + z \neq z$ (c) Every real number is smaller than some integer. Solution $\forall x \in \mathbb{R} \exists z \in \mathbb{Z} \ x < z$ True. Negation: $\exists x \in \mathbb{R} \forall x \in \mathbb{Z} \ x > z$ (4) Negate the following sentences. Are they true? (a) If x^2 is rational, then so is x. Solution $x^2 \in \mathbb{Q} \Rightarrow x \in \mathbb{Q}$. False, e.g., $2 \in \mathbb{Q}$ and $\sqrt{2} \notin Q$ Negation: $x^2 \in \mathbb{Q}$ and $x \notin \mathbb{Q}$. (b) xy = 0 iff x = 0 or y = 0True, Negation $xy \neq 0$ iff x = 0 or y = 0xy = 0 iff $x \neq 0$ and $y \neq 0$ (c) The derivative of a polynomial function f is 0 iff f is constant. **True, Negation:** The derivative of a polynomial function f is 0 iff f is not constant. (d) $\exists x \in \mathbb{R} : x^2 = -1$ False, Negation: $\forall x \in \mathbb{R} : x^2 \neq -1$ (e) $\forall r \in \mathbb{R} : \sin(r\pi) = 0 \Leftrightarrow r$ is an integer **Negation:** $\exists r \in \mathbb{R} : \sin(r\pi) = 0$ iff r is not an integer (5) True or false? Give a proof or a counter-example: (a) $\forall x \in \mathbb{R} \ \forall y \in \mathbb{R} \ x + y = 1$ False, counter-example: x=y=0(b) $\forall x \in \mathbb{R} \exists y \in \mathbb{R} x + y = 1$ **True:** for $x \in \mathbb{R}$ we have y = 1 - x such that x + y = 1(c) $\exists x \in \mathbb{R} \ \forall y \in \mathbb{R} \ x + y = 1$ **False:** Suppose we have such a fixed $x \in \mathbb{R}$. Then for y = -x we'd have $x + y = 0 \neq 1$. Hence there cannot be a single x that makes x + y = 1 true for all $y \in \mathbb{R}$. (d) $\exists x \in \mathbb{R} \ \exists y \in \mathbb{R} \ x + y = 1$ **True:** e.g. x = 0, y = 1(6) Write as complete English sentences. True or false? Negate: (a) $\forall a \in \mathbb{R} \exists b \in \mathbb{R} \forall c \in \mathbb{R} : a < b \Rightarrow c < b$ **Solution:** For all $a \in \mathbb{R}$ there exists $b \in \mathbb{R}$ such that for all $c \in \mathbb{R}$, if a < b then c < b. True: Let $a \in \mathbb{R}$ arbitrary. Next choose $b \in \mathbb{R}$ such that $a \not< b$, say b = a. Then $\forall c \in \mathbb{R} : a < b \Rightarrow c < b$ is true. (Note that by the choice of b, the assumption a < b of the implication is false. Hence FALSE $\Rightarrow c < b$ is true.)

Negation: $\exists a \in \mathbb{R} \ \forall b \in \mathbb{R} \ \exists c \in \mathbb{R} : a < b \land b \leq c$.

Note that the negation is clearly false. Hence again the original statement must be true!

- (b) ∀ set A ∀ set B ∃ set C : A ∪ B = C.
 Solution: For all sets A and B there exists a set C that is the union of A and B.
 True by Axiom of Unions in Zermelo-Fraenkel Set Theory.
 Negation: ∃ set A ∃ set B ∀ set C : A ∪ B ≠ C.
 There exist sets A and B whose union is not a set.
 (c) ∀x, y ∈ ℝ ∀ε > 0 ∃δ > 0 : |x y| < ε ⇒ |2x 2y| < δ
 - **Solution:** For all reals x, y and every $\epsilon > 0$ there exists a $\delta > 0$ such that $|x y| < \varepsilon$ implies $|2x 2y| < \delta$. True for $\delta = 2\varepsilon$. Negation: $\exists x, y \in \mathbb{R} \ \exists \varepsilon > 0 \ \forall \delta > 0 : |x - y| < \varepsilon \land |2x - 2y| \ge \delta$.

References

[1] Richard Hammack. The Book of Proof. Creative Commons, 2nd edition, 2013. Available for free: http://www.people.vcu.edu/~rhammack/BookOfProof/