Math 2001 - Assignment 3

Due September 18, 2020

(1) Simplify the following sets and justify your answers:
(a) $\bigcap_{n \in \mathbb{N}}\{n z: z \in \mathbb{Z}\}$
(b) $\bigcup_{x \in \mathbb{R}}[-x, x]$
(c) $\bigcap_{n \in \mathbb{N}}\left(-\frac{1}{n}, \frac{1}{n}\right)$

Solution.

(a) $\bigcap_{n \in \mathbb{N}}\{n z: z \in \mathbb{Z}\}=\{0\}$ because 0 is the only integer that is a multiple of every natural number.
(b) $\bigcup_{x \in \mathbb{R}}[-x, x]=\mathbb{R}$ because every real x is in some interval of the union, namely $[-|x|,|x|]$.
(c) $\bigcap_{n \in \mathbb{N}}\left(-\frac{1}{n}, \frac{1}{n}\right)=\{0\}$ because 0 is the only real number that is contained in every interval $\left(-\frac{1}{n}, \frac{1}{n}\right)$ for $n \in \mathbb{N}$
(2) Are the following statements? If so, determine whether they are true or false and write down their negation.
(a) Some swans are black.

True, because I've seen a black swan
Negation: There are no black swans.
(b) Every real number is an even integer.

False, e.g., 0.5 is not an integer.
Negation: Some real number is not an even integer.
(c) 2 is even, and 3 is even.

False, because 3 is not even.
Negation using de Morgan's Law: 2 is odd or 3 is odd.
(d) If x is an even integer, then $x+1$ is odd.

True, because if 2 divides x, then 2 does not divide $x+1$.
Negation: x is even and $x+1$ is not odd.
(e) $2 x=1$

Not a statement since neither true nor false.
(3) [1, Section 2.3]: Exercises 2,3,4,5,10

Solution.

2. If a function is differentiable, then it's continuous.
3. If a function is continuous, then it's integrable.
4. If a function is polynomial, then it's rational.
5. If an integer is divisible by 8 , then it's divisible by 4 .
6. If the discriminant is negative, then the quadratic equation has no real solution.
(4) Are the given statements true? Formulate their negations.
(a) Not all sides of a triangle have the same length or all its angles are equal.

True, because if all sides are equal, then all angles are equal as well. Negation: All sides of a triangle have the same length and not all angles are equal.
(b) If the integer x is a multiple of 6 , then x is even.

True, because if 6 divides x, then so does 2 .
Negation (Assumption of the if-then statement holds but not the conclusion): x is a multiple of 6 and x is not even.
(c) $x \in \mathbb{R}$ is a square $\Rightarrow x \geq 0$

True.
Negation: $x \in \mathbb{R}$ is a square $\wedge x<0$
(d) $2^{n}+1$ is a prime number for every $n \in \mathbb{N}$.

False, because $2^{3}+1=9$ is not prime.
Negation: $2^{n}+1$ is not prime for some $n \in \mathbb{N}$.
(e) There exists an even prime.

True, because e.g. 2 is an even prime.
Negation: There does not exist an even prime. All primes are odd.
(5) Use truth tables to show that the following hold for all logical statements P, Q, R :
(a) $P \vee(P \wedge Q)=P$
(b) $P \wedge(Q \vee R)=(P \wedge Q) \vee(P \wedge R)$

Solution

(a)

P	Q	$P \vee(P \wedge Q)$
T	T	T
T	F	T
F	T	F
F	F	F

Since column 1 and 3 correspond, statements are equal.
(b)

P	Q	R	$P \wedge(Q \vee R)$	$(P \wedge Q) \vee(P \wedge R)$
T	T	T	T	T
T	T	F	T	T
T	F	T	T	T
T	F	F	F	F
F	T	T	F	F
F	T	F	F	F
F	F	T	F	F
F	F	F	F	F

Since the last 2 columns correspond, statements are equal.
(6) Are the following equalities true for all statements P, Q ? Consider truth tables.
(a) $P \Rightarrow Q=\sim P \vee Q$
(b) $\sim(P \Leftrightarrow Q)=\sim P \Leftrightarrow Q=P \Leftrightarrow \sim Q$

Solution

(a) True since

P	Q	$P \Rightarrow Q$	$\sim P \vee Q$
T	T	T	T
T	F	F	F
F	T	T	T
F	F	T	T

(b) True since the last 3 columns in the next table are all equal

P	Q	$P \Leftrightarrow Q$	$\sim(P \Leftrightarrow Q)$	$\sim P \Leftrightarrow Q$	$P \Leftrightarrow \sim Q$
T	T	T	F	F	
T	F	F	T	T	
F	T	F	T	T	
F	F	T	F	F	

References
[1] Richard Hammack. The Book of Proof. Creative Commons, 3rd edition, 2018. Available for free: http://www.people.vcu.edu/~rhammack/BookOfProof/

