Math 2001 - Assignment 3

Due September 18, 2020

- (1) Simplify the following sets and justify your answers:
 (a) ∩_{n∈ℕ} {nz : z ∈ Z} (b) ∪_{x∈ℝ}[-x,x] (c) ∩_{n∈ℕ}(-¹/_n, ¹/_n) Solution.
 (a) ∩_{n∈ℕ} {nz : z ∈ Z} = {0} because 0 is the only integer that is a multiple of every natural number.
 (b) ∪_{x∈ℝ}[-x,x] = ℝ because every real x is in some interval of the union, namely [-|x|, |x|].
 (c) ∩_{n∈ℕ}(-¹/_n, ¹/_n) = {0} because 0 is the only real number that is contained in every interval (-¹/_n, ¹/_n) for n ∈ ℕ
- (2) Are the following statements? If so, determine whether they are true or false and write down their negation.
 - (a) Some swans are black.True, because I've seen a black swan Negation: There are no black swans.
 - (b) Every real number is an even integer.
 False, e.g., 0.5 is not an integer.
 Negation: Some real number is not an even integer.
 - (c) 2 is even, and 3 is even.
 False, because 3 is not even.
 Negation using de Morgan's Law: 2 is odd or 3 is odd.
 - (d) If x is an even integer, then x + 1 is odd. True, because if 2 divides x, then 2 does not divide x + 1. Negation: x is even and x + 1 is not odd.
 - (e) 2x = 1

Not a statement since neither true nor false.

(3) [1, Section 2.3]: Exercises 2,3,4,5,10

Solution.

- 2. If a function is differentiable, then it's continuous.
- 3. If a function is continuous, then it's integrable.
- 4. If a function is polynomial, then it's rational.
- 5. If an integer is divisible by 8, then it's divisible by 4.
- 10. If the discriminant is negative, then the quadratic equation has no real solution.

- (4) Are the given statements true? Formulate their negations.
 - (a) Not all sides of a triangle have the same length or all its angles are equal.
 True, because if all sides are equal, then all angles are equal as well.
 Negation: All sides of a triangle have the same length and not all angles are equal.
 - (b) If the integer x is a multiple of 6, then x is even.
 True, because if 6 divides x, then so does 2.
 Negation (Assumption of the if-then statement holds but not the conclusion): x is a multiple of 6 and x is not even.
 - (c) $x \in \mathbb{R}$ is a square $\Rightarrow x \ge 0$ **True.**

Negation: $x \in \mathbb{R}$ is a square $\land x < 0$

(d) $2^n + 1$ is a prime number for every $n \in \mathbb{N}$. False, because $2^3 + 1 = 9$ is not prime. Negation: $2^n + 1$ is not prime for some $n \in \mathbb{N}$.

(e) There exists an even prime.

True, because e.g. 2 is an even prime.

Negation: There does not exist an even prime. All primes are odd.

(5) Use truth tables to show that the following hold for all logical statements P, Q, R: (a) $P \lor (P \land Q) = P$

(b)
$$P \land (Q \lor R) = (P \land Q) \lor (P \land R)$$

Solution

(a)

Since column 1 and 3 correspond, statements are equal.

(b)

P	Q	R	$P \land (Q \lor R)$	$ (P \land Q) \lor (P \land R) $
T	T	T	Т	Т
T	T	F	T	T
T	F	T	T	T
T	F	F	F	F
F	T	T	F	F
F	T	F	F	F
F	F	T	F	F
F	F	F	F	F

Since the last 2 columns correspond, statements are equal.

- (a) $P \Rightarrow Q = \sim P \lor Q$ (b) $\sim (P \Leftrightarrow Q) = \sim P \Leftrightarrow Q = P \Leftrightarrow \sim Q$

Solution

(a) True since

(b) True since the last 3 columns in the next table are all equal

P	Q	$P \Leftrightarrow Q$	$\sim (P \Leftrightarrow Q)$	$\sim P \Leftrightarrow Q$	$P \Leftrightarrow \sim Q$
T	T	T	F	F	
T	F	F	T	T	
F	T	F	T	T	
F	F	T	F	F	

References

[1] Richard Hammack. The Book of Proof. Creative Commons, 3rd edition, 2018. Available for free: http://www.people.vcu.edu/~rhammack/BookOfProof/