Math 2001 - Assignment 2

Due September 11, 2020
(1) Describe the following using set builder notation (either Axiom of Specification or Replacement):
(a) $A=$ the set of points in \mathbb{R}^{2} on the line through $(2,3)$ that is parallel to the y-axis
(b) $B=$ the set of points $(x, y) \in \mathbb{R}^{2}$ on the line through $(1,2)$ and $(3,4)$
(c) $C=$ the set of points in \mathbb{R}^{2} that lie on a circle with center $(0,0)$ and radius 2

Solution.

$A=\left\{(x, y) \in \mathbb{R}^{2}: x=2\right\}=\{(2, y): y \in \mathbb{R}\}$
$B=\left\{(x, y) \in \mathbb{R}^{2}:-x+y=1\right\}$ by finding the equation of the line through $(1,2)$ and (3,4)
$C=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=4\right\}$
(2) In the universe $U:=\mathbb{N}$, compute for subsets $A=\{1,2,3,4,5\}, B=\{x \in U: x$ is even $\}$, and $C=\{x \in U: x \geq 4\}$:
(a) $A \cap \bar{B}$
(b) $A \cup(B \cap C)$
(c) $(A-B) \cup B$

Solution.

$A \cap \bar{B}=\{1,3,5\}$
$A \cup(B \cap C)=\{1,2,3,4,5,6,8,10,12, \ldots\}$
$(A-B) \cup B=A \cup B=\{1,2,3,4,5,6,8,10,12, \ldots\}$
(3) Are the following true for all sets A, B in a universe U ?
(a) $A-B=B-A$
(b) $A \cup B \subseteq(A \cap \bar{B}) \cup(B \cap \bar{A})$

Consider Venn diagrams first and then either write a proof that the equations hold or give an example where they fail.

Solution.

(a) $A-B=B-A$ does not hold for all sets A, B. One counterexample is $A=$ $\{1\}, B=\emptyset$
(b) $A \cup B \subseteq(A \cap \bar{B}) \cup(B \cap \bar{A})$ does not hold for all A, B. One counterexample is $A=B=\{1\}$.
(4) Show that for all sets A, B, C

$$
(A \cup B) \cap C=(A \cap C) \cup(B \cap C)
$$

without Venn diagrams.
Recall that we already showed that the lefthand side is contained in the the righthand side. So it only remains to write a proof for the converse,

$$
(A \cup B) \cap C \supseteq(A \cap C) \cup(B \cap C) .
$$

Solution.

Let $x \in(A \cap C) \cup(B \cap C)$. By the definition of \cup we have $x \in(A \cap C)$ or $x \in(B \cap C)$ and hence 2 cases to consider:

Case 1, $x \in(A \cap C)$: Then $x \in A$ and $x \in C$ by the definition of \cap. Since $x \in A$, we also have $x \in A \cup B$. Together with $x \in C$ this implies that $x \in(A \cup B) \cap C$.

Case 2, $x \in(B \cap C)$: Similar to case 1 .
In either case $x \in(A \cup B) \cap C$. Hence we proved that $(A \cap C) \cup(B \cap C) \subseteq$ $(A \cup B) \cap C$
(5) Show for all sets A, B in the universe U :

$$
\overline{A \cup B}=\bar{A} \cap \bar{B} \quad \text { (de Morgan's law) }
$$

First use Venn diagrams. Then write down a proof.

Solution.

Proof of $\overline{A \cup B} \subseteq \bar{A} \cap \bar{B}$: Let $x \in \overline{A \cup B}$. Then $x \notin A \cup B$, which yields that $x \notin A$ and $x \notin B$. Hence $x \in \bar{A}$ and $x \in \bar{B}$. Thus $x \in \bar{A} \cap \bar{B}$.

Proof of $\overline{A \cup B} \supseteq \bar{A} \cap \bar{B}$: Let $x \in \bar{A} \cap \bar{B}$. Then $x \in \bar{A}$ and $x \in \bar{B}$. Equivalently $x \notin A$ and $x \notin B$. But then $x \notin A \cup B$, which yields $x \in \overline{A \cup B}$.
(6) Simplify the following sets and justify your answers:
(a) $\bigcup_{n \in \mathbb{N}}(0, n]$
(b) $\bigcap_{n=1}^{3}\{n z: z \in \mathbb{Z}\}$
(c) $\bigcup_{A \in P(\mathbb{N})} A$

In (a) we have $(0, n]=\{x \in \mathbb{R}: 0<x \leq n\}$, the real interval from 0 to n that does not contain 0 but contains n.

Solution.

(a) $\bigcup_{n \in \mathbb{N}}(0, n]=(0,1] \cup(0,2] \cup(0,3] \cup \cdots=\{x \in \mathbb{R}: x>0\}$

These sets are equal because every $x \in(0, n]$ for some $n \in \mathbb{N}$ is also in the set on the right hand side. Conversely let $x \in \mathbb{R}$ such that $x>0$. Then there exists $n \in \mathbb{N}$ such that $x \in(0, n]$. Hence x is in the set on the left hand side.
(b) $\bigcap_{n=1}^{3}\{n z: z \in \mathbb{Z}\}$
$=\mathbb{Z} \cap\{\ldots,-2,0,2,4,6 \ldots\} \cap\{\ldots,-3,0,3,6,9 \ldots\}$
$=\{\ldots,-6,0,6,12,18, \ldots\}$
$=\{6 z: z \in \mathbb{Z}\}$
(c) $\bigcup_{A \in P(\mathbb{N})} A=\emptyset \cup\{1\} \cup\{2\} \cup \cdots \cup\{1,2\} \cup \cdots \cup \mathbb{N}=\mathbb{N}$

The union of all subsets of \mathbb{N} just yields \mathbb{N}.

