Math 2001 - Assignment 2

Due September 11, 2020

- (1) Describe the following using set builder notation (either Axiom of Specification or Replacement):
 - (a) A =the set of points in \mathbb{R}^2 on the line through (2, 3) that is parallel to the *y*-axis
 - (b) B = the set of points $(x, y) \in \mathbb{R}^2$ on the line through (1, 2) and (3, 4)
 - (c) C = the set of points in \mathbb{R}^2 that lie on a circle with center (0,0) and radius 2

Solution.

 $\begin{array}{l} A = \{(x,y) \in \mathbb{R}^2 \ : \ x = 2\} = \{(2,y) \ : \ y \in \mathbb{R}\} \\ B = \{(x,y) \in \mathbb{R}^2 \ : \ -x + y = 1\} \text{ by finding the equation of the line through } (1,2) \\ \text{and } (3,4) \\ C = \{(x,y) \in \mathbb{R}^2 \ : \ x^2 + y^2 = 4\} \end{array}$

(2) In the universe $U := \mathbb{N}$, compute for subsets $A = \{1, 2, 3, 4, 5\}$, $B = \{x \in U : x \text{ is even }\}$, and $C = \{x \in U : x \ge 4\}$: (a) $A \cap \overline{B}$ (b) $A \cup (B \cap C)$ (c) $(A - B) \cup B$

Solution.

 $A \cap \overline{B} = \{1, 3, 5\}$ $A \cup (B \cap C) = \{1, 2, 3, 4, 5, 6, 8, 10, 12, \dots\}$ $(A - B) \cup B = A \cup B = \{1, 2, 3, 4, 5, 6, 8, 10, 12, \dots\}$

- (3) Are the following true for all sets A, B in a universe U?
 - (a) A B = B A

(b)
$$A \cup B \subseteq (A \cap \overline{B}) \cup (B \cap \overline{A})$$

Consider Venn diagrams first and then either write a proof that the equations hold or give an example where they fail.

Solution.

- (a) A B = B A does not hold for all sets A, B. One counterexample is $A = \{1\}, B = \emptyset$
- (b) $A \cup B \subseteq (A \cap \overline{B}) \cup (B \cap \overline{A})$ does not hold for all A, B. One counterexample is $A = B = \{1\}.$
- (4) Show that for all sets A, B, C

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$

without Venn diagrams.

Recall that we already showed that the lefthand side is contained in the the righthand side. So it only remains to write a proof for the converse,

$$(A \cup B) \cap C \supseteq (A \cap C) \cup (B \cap C).$$

Solution.

Let $x \in (A \cap C) \cup (B \cap C)$. By the definition of \cup we have $x \in (A \cap C)$ or $x \in (B \cap C)$ and hence 2 cases to consider: **Case 1**, $x \in (A \cap C)$: Then $x \in A$ and $x \in C$ by the definition of \cap . Since $x \in A$, we also have $x \in A \cup B$. Together with $x \in C$ this implies that $x \in (A \cup B) \cap C$. **Case 2**, $x \in (B \cap C)$: Similar to case 1.

In either case $x \in (A \cup B) \cap C$. Hence we proved that $(A \cap C) \cup (B \cap C) \subseteq (A \cup B) \cap C$

(5) Show for all sets A, B in the universe U:

 $\overline{A \cup B} = \overline{A} \cap \overline{B} \qquad (\text{de Morgan's law})$

First use Venn diagrams. Then write down a proof.

Solution.

Proof of $\overline{A \cup B} \subseteq \overline{A} \cap \overline{B}$: Let $x \in \overline{A \cup B}$. Then $x \notin A \cup B$, which yields that $x \notin A$ and $x \notin B$. Hence $x \in \overline{A}$ and $x \in \overline{B}$. Thus $x \in \overline{A} \cap \overline{B}$. \Box Proof of $\overline{A \cup B} \supseteq \overline{A} \cap \overline{B}$: Let $x \in \overline{A} \cap \overline{B}$. Then $x \in \overline{A}$ and $x \in \overline{B}$. Equivalently $x \notin A$ and $x \notin B$. But then $x \notin A \cup B$, which yields $x \in \overline{A \cup B}$. \Box

(6) Simplify the following sets and justify your answers: (a) $\bigcup_{n \in \mathbb{N}} (0, n]$ (b) $\bigcap_{n=1}^{3} \{ nz : z \in \mathbb{Z} \}$ (c) $\bigcup_{A \in P(\mathbb{N})} A$

In (a) we have $(0, n] = \{x \in \mathbb{R} : 0 < x \le n\}$, the real interval from 0 to n that does not contain 0 but contains n.

Solution.

(a) $\bigcup_{n \in \mathbb{N}} (0, n] = (0, 1] \cup (0, 2] \cup (0, 3] \cup \dots = \{x \in \mathbb{R} : x > 0\}$

These sets are equal because every $x \in (0, n]$ for some $n \in \mathbb{N}$ is also in the set on the right hand side. Conversely let $x \in \mathbb{R}$ such that x > 0. Then there exists $n \in \mathbb{N}$ such that $x \in (0, n]$. Hence x is in the set on the left hand side.

(b)
$$\bigcap_{n=1}^{3} \{ nz : z \in \mathbb{Z} \}$$

= $\mathbb{Z} \cap \{ \dots, -2, 0, 2, 4, 6 \dots \} \cap \{ \dots, -3, 0, 3, 6, 9 \dots \}$
= $\{ \dots, -6, 0, 6, 12, 18, \dots \}$
= $\{ 6z : z \in \mathbb{Z} \}$

(c) $\bigcup_{A \in P(\mathbb{N})} A = \emptyset \cup \{1\} \cup \{2\} \cup \cdots \cup \{1, 2\} \cup \cdots \cup \mathbb{N} = \mathbb{N}$ The union of all subsets of \mathbb{N} just yields \mathbb{N} .