Math 2001 - Assignment 2

Due September 11, 2020

(1) Describe the following using set builder notation (either Axiom of Specification or Replacement):
(a) $A=$ the set of points in \mathbb{R}^{2} on the line through $(2,3)$ that is parallel to the y-axis
(b) $B=$ the set of points $(x, y) \in \mathbb{R}^{2}$ on the line through $(1,2)$ and (3,4)
(c) $C=$ the set of points in \mathbb{R}^{2} that lie on a circle with center $(0,0)$ and radius 2
(2) In the universe $U:=\mathbb{N}$, compute for subsets $A=\{1,2,3,4,5\}$, $B=\{x \in U: x$ is even $\}$, and $C=\{x \in U: x \geq 4\}:$
(a) $A \cap \bar{B}$
(b) $A \cup(B \cap C)$
(c) $(A-B) \cup B$
(3) Are the following true for all sets A, B in a universe U ?
(a) $A-B=B-A$
(b) $A \cup B \subseteq(A \cap \bar{B}) \cup(B \cap \bar{A})$

Consider Venn diagrams first and then either write a proof that the equations hold or give an example where they fail.
(4) Show that for all sets A, B, C

$$
(A \cup B) \cap C=(A \cap C) \cup(B \cap C)
$$

without Venn diagrams.
We already showed that the lefthand side is contained in the righthand side in class. So it only remains to write a proof for the converse inclusion,

$$
(A \cup B) \cap C \supseteq(A \cap C) \cup(B \cap C) .
$$

(5) Show for all sets A, B in the universe U :

$$
\overline{A \cup B}=\bar{A} \cap \bar{B} \quad \text { (de Morgan's law) }
$$

First use Venn diagrams. Then write down a proof.
(6) Read Section 1.8 in [1]. Then simplify the following sets and justify your answers:
(a) $\bigcup_{n \in \mathbb{N}}(0, n]$
(b) $\bigcap_{n=1}^{3}\{n z: z \in \mathbb{Z}\}$
(c) $\bigcup_{A \in P(\mathbb{N})} A$

In (a) we have $(0, n]=\{x \in \mathbb{R}: 0<x \leq n\}$, the real interval from 0 to n that does not contain 0 but contains n.

References

[1] Richard Hammack. The Book of Proof. Creative Commons, 3rd edition, 2018. Available for free: http://www.people.vcu.edu/~rhammack/BookOfProof/

