Math 2001 - Review Problems

The following solution sketches are not complete but just give an idea of the proofs and computations for checking correctness.

(1) Show for all sets A, B:

$$P(A) \cup P(B) \subseteq P(A \cup B)$$

Proof sketch. Recall that P(A) is the power set of A. Let $X \in P(A) \cup P(B)$. Then X is a subset of A or of B. Hence $X \subseteq A \cup B$.

- (2) (a) Negate the following statements:
 - (i) $\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall x \in \mathbb{R} \colon |x| < \delta \Rightarrow x^2 < \varepsilon$
 - (ii) $x^y \in \mathbb{Q}$ iff $x \in \mathbb{Q}$ and $y \in \mathbb{N}$.

Solution.

- (i) Just switch \forall to \exists and conversely. Then negate $P \Rightarrow Q$ as $P \land \sim Q$.
- (ii) Negate $P \Leftrightarrow Q$ as $\sim P \Leftrightarrow Q$.
- (b) Are $P \Rightarrow \sim Q$ and $\sim (P \land Q)$ logically equivalent?

Solution. Yes by truthtable.

(3) A word is a list of letters over the alphabet A,...,Z. How many 5-letter words are there that start with A or end with Z?

Solution.

Number of words starting with $A: 1 * 26^4$ Number of words ending with $Z: 1 * 26^4$ Number of words starting with A and ending with $Z: 1^2 * 26^3$ By inclusion-exclusion there are $2 * 1 * 26^4 - 1^2 * 26^3$ words starting with A or ending with Z.

(4) Prove by contradiction: $x^2 - y^2 = 1$ has no solutions $x, y \in \mathbb{N}$. (Recall $0 \notin \mathbb{N}$ and consider a factorization of $x^2 - y^2$.)

Proof. Seeking a contradiction, suppose $x^2 - y^2 = 1$ for some $x, y \in \mathbb{N}$. Since $x^2 - y^2 = (x - y)(x + y)$, this yields that (x - y)(x + y) = 1. Hence x - y = 1 and x + y = 1. But this only works for x = 1 and y = 0. So $y \notin \mathbb{N}$. Contradiction.

Thus our assumption was wrong. There are no such $x, y \in \mathbb{N}$. \Box

(5) Show for any $n \in \mathbb{N}$ with $n \geq 3$:

$$\sum_{i=2}^{n-1} \binom{i}{2} = \binom{n}{3}.$$

Proof by induction.

Base case: Check for n = 3. Induction assumption: $\sum_{i=2}^{n-1} {i \choose 2} = {n \choose 3}$ for a fixed $n \in \mathbb{N}$. Induction step: Replace n by n + 1 in the formula and show $\sum_{i=2}^{n} {i \choose 2} = {n+1 \choose 3}$.

Start on the lefthand side and use the induction assumption

$$\sum_{i=2}^{n} \binom{i}{2} = \sum_{i=2}^{n-1} \binom{i}{2} + \binom{n}{2} = \binom{n}{3} + \binom{n}{2} = \dots = \binom{n+1}{3}$$

(6) (a) The kernel of a function $f: A \to B$ is the relation

$$R = \{ (x, y) \in A^2 : f(x) = f(y) \}.$$

Show that R is an equivalence relation on A.

(b) For $x, y \in \mathbb{Z}_6$ let

$$x S y$$
 if $x^2 = y^2$.

Then S is an equivalence relation on \mathbb{Z}_6 . Describe the equivalence classes of S. How many are there?

Solution.

÷

- (a) Check that R is reflexive, symmetric, transitive.
- (b) Denote the elements of \mathbb{Z}_6 by $0, \ldots, 5$ (no brackets). Two elements are equivalent if their squares are equal. So consider the squares $0^2 = 0, 1^2 = 1, 2^2 = 4, 3^2 = 3, 4^2 = 4, 5^2 = 1$

Hence the class of 0 is $\{0\}$ since 0 is only related to itself, the class of 1 is $\{1, 5\}$ since 1 and 5 are related,

4 different classes in total.

(7) Solve $[9] \cdot [x] = [5]$ in \mathbb{Z}_{43} using the extended Euclidean algorithm.

Solution. Solve 9x + 43y = 5 for integers x, y.

First compute gcd(43, 9) with Bezout coefficients u, v such that 43u + 9v = 1. Then multiply this Bezout identity with 5 to get 43(5u) + 9(5v) = 5. Hence x = 5v is a solution.

2

(8) (a) Check whether the function

 $f\colon \mathbb{Z}\times\mathbb{Z}\to\mathbb{Z}, (x,y)\mapsto x+2y,$

is injective, surjective, bijective.

Solution. Not injective, but surjective. Hence not bijective.

(b) Let $f: A \to B$ and $g: B \to C$. Prove that if $g \circ f$ is injective, then f is injective.

Solution. Use contraposition (Assignment on HW 13).