## Math 2001 - Review Problems

The following solution sketches are not complete but just give an idea of the proofs and computations for checking correctness.
(1) Show for all sets $A, B$ :

$$
P(A) \cup P(B) \subseteq P(A \cup B)
$$

Proof sketch. Recall that $P(A)$ is the power set of $A$. Let $X \in P(A) \cup P(B)$. Then $X$ is a subset of $A$ or of $B$. Hence $X \subseteq A \cup B$.
(2) (a) Negate the following statements:
(i) $\forall \varepsilon>0 \exists \delta>0 \forall x \in \mathbb{R}:|x|<\delta \Rightarrow x^{2}<\varepsilon$
(ii) $x^{y} \in \mathbb{Q}$ iff $x \in \mathbb{Q}$ and $y \in \mathbb{N}$.

## Solution.

(i) Just switch $\forall$ to $\exists$ and conversely. Then negate $P \Rightarrow$ $Q$ as $P \wedge \sim Q$.
(ii) Negate $P \Leftrightarrow Q$ as $\sim P \Leftrightarrow Q$.
(b) Are $P \Rightarrow \sim Q$ and $\sim(P \wedge Q)$ logically equivalent?

Solution. Yes by truthtable.
(3) A word is a list of letters over the alphabet $A, \ldots, Z$.

How many 5 -letter words are there that start with $A$ or end with $Z$ ?

## Solution.

Number of words starting with $A: 1 * 26^{4}$
Number of words ending with $Z: 1 * 26^{4}$
Number of words starting with $A$ and ending with Z: $1^{2} * 26^{3}$
By inclusion-exclusion there are $2 * 1 * 26^{4}-1^{2} * 26^{3}$ words starting with $A$ or ending with $Z$.
(4) Prove by contradiction: $x^{2}-y^{2}=1$ has no solutions $x, y \in \mathbb{N}$. (Recall $0 \notin \mathbb{N}$ and consider a factorization of $x^{2}-y^{2}$.)
Proof. Seeking a contradiction, suppose $x^{2}-y^{2}=1$ for some $x, y \in \mathbb{N}$. Since $x^{2}-y^{2}=(x-y)(x+y)$, this yields that $(x-y)(x+y)=1$. Hence $x-y=1$ and $x+y=1$. But this only works for $x=1$ and $y=0$. So $y \notin \mathbb{N}$. Contradiction.

Thus our assumption was wrong. There are no such $x, y \in$ $\mathbb{N}$.
(5) Show for any $n \in \mathbb{N}$ with $n \geq 3$ :

$$
\sum_{i=2}^{n-1}\binom{i}{2}=\binom{n}{3}
$$

## Proof by induction.

Base case: Check for $n=3$.
Induction assumption: $\sum_{i=2}^{n-1}\binom{i}{2}=\binom{n}{3}$ for a fixed $n \in \mathbb{N}$.
Induction step: Replace $n$ by $n+1$ in the formula and show $\sum_{i=2}^{n}\binom{i}{2}=\binom{n+1}{3}$.

Start on the lefthand side and use the induction assumption

$$
\sum_{i=2}^{n}\binom{i}{2}=\sum_{i=2}^{n-1}\binom{i}{2}+\binom{n}{2}=\binom{n}{3}+\binom{n}{2}=\cdots=\binom{n+1}{3}
$$

(6) (a) The kernel of a function $f: A \rightarrow B$ is the relation

$$
R=\left\{(x, y) \in A^{2}: f(x)=f(y)\right\} .
$$

Show that $R$ is an equivalence relation on $A$.
(b) For $x, y \in \mathbb{Z}_{6}$ let

$$
x S y \text { if } x^{2}=y^{2}
$$

Then $S$ is an equivalence relation on $\mathbb{Z}_{6}$. Describe the equivalence classes of $S$. How many are there?

## Solution.

(a) Check that $R$ is reflexive, symmetric, transitive.
(b) Denote the elements of $\mathbb{Z}_{6}$ by $0, \ldots, 5$ (no brackets).

Two elements are equivalent if their squares are equal. So consider the squares $0^{2}=0,1^{2}=1,2^{2}=4,3^{2}=3,4^{2}=$ $4,5^{2}=1$
Hence the class of 0 is $\{0\}$ since 0 is only related to itself, the class of 1 is $\{1,5\}$ since 1 and 5 are related, !
4 different classes in total.
(7) Solve $[9] \cdot[x]=[5]$ in $\mathbb{Z}_{43}$ using the extended Euclidean algorithm.
Solution. Solve $9 x+43 y=5$ for integers $x, y$.
First compute $\operatorname{gcd}(43,9)$ with Bezout coefficients $u, v$ such that $43 u+9 v=1$. Then multiply this Bezout identity with 5 to get $43(5 u)+9(5 v)=5$. Hence $x=5 v$ is a solution.
(8) (a) Check whether the function

$$
f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z},(x, y) \mapsto x+2 y
$$

is injective, surjective, bijective.
Solution. Not injective, but surjective. Hence not bijective.
(b) Let $f: A \rightarrow B$ and $g: B \rightarrow C$. Prove that if $g \circ f$ is injective, then $f$ is injective.
Solution. Use contraposition (Assignment on HW 13).

