Math 2001 - Review Problems

(1) Show for all sets A, B :

$$
P(A) \cup P(B) \subseteq P(A \cup B)
$$

(2) (a) Negate the following statements:
(i) $\forall \varepsilon>0 \exists \delta>0 \forall x \in \mathbb{R}:|x|<\delta \Rightarrow x^{2}<\varepsilon$
(ii) $x^{y} \in \mathbb{Q}$ iff $x \in \mathbb{Q}$ and $y \in \mathbb{N}$.
(b) Are $P \Rightarrow \sim Q$ and $\sim(P \wedge Q)$ logically equivalent?
(3) A word is a list of letters over the alphabet A, \ldots, Z.

How many 5 -letter words are there that start with A or end with Z ?
(4) Prove by contradiction: $x^{2}-y^{2}=1$ has no solutions $x, y \in \mathbb{N}$. (Recall $0 \notin \mathbb{N}$ and consider a factorization of $x^{2}-y^{2}$.)
(5) Show for any $n \in \mathbb{N}$ with $n \geq 3$:

$$
\sum_{i=2}^{n-1}\binom{i}{2}=\binom{n}{3}
$$

(6) (a) The kernel of a function $f: A \rightarrow B$ is the relation

$$
R=\left\{(x, y) \in A^{2}: f(x)=f(y)\right\} .
$$

Show that R is an equivalence relation on A.
(b) For $x, y \in \mathbb{Z}_{6}$ let

$$
x S y \text { if } x^{2}=y^{2}
$$

Then S is an equivalence relation on \mathbb{Z}_{6}. Describe the equivalence classes of S. How many are there?
(7) Solve $[9] \cdot[x]=[5]$ in \mathbb{Z}_{43} using the extended Euclidean algorithm.
(8) (a) Check whether the function

$$
f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z},(x, y) \mapsto x+2 y
$$

is injective, surjective, bijective.
(b) Let $f: A \rightarrow B$ and $g: B \rightarrow C$. Prove that if $g \circ f$ is injective, then f is injective.

