Math 2001 - Review Problems

(1) Show for all sets A, B:

 $P(A) \cup P(B) \subseteq P(A \cup B)$

- (2) (a) Negate the following statements: (i) $\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in \mathbb{R} \colon |x| < \delta \Rightarrow x^2 < \varepsilon$ (ii) $x^y \in \mathbb{Q}$ iff $x \in \mathbb{Q}$ and $y \in \mathbb{N}$.
 - (b) Are $P \Rightarrow \sim Q$ and $\sim (P \land Q)$ logically equivalent?
- (3) A word is a list of letters over the alphabet A,...,Z. How many 5-letter words are there that start with A or end with Z?
- (4) Prove by contradiction: $x^2 y^2 = 1$ has no solutions $x, y \in \mathbb{N}$. (Recall $0 \notin \mathbb{N}$ and consider a factorization of $x^2 - y^2$.)
- (5) Show for any $n \in \mathbb{N}$ with $n \geq 3$:

$$\sum_{i=2}^{n-1} \binom{i}{2} = \binom{n}{3}.$$

(6) (a) The kernel of a function $f: A \to B$ is the relation

 $R = \{ (x, y) \in A^2 : f(x) = f(y) \}.$

- Show that R is an equivalence relation on A.
- (b) For $x, y \in \mathbb{Z}_6$ let

$$x S y$$
 if $x^2 = y^2$.

Then S is an equivalence relation on \mathbb{Z}_6 . Describe the equivalence classes of S. How many are there?

- (7) Solve $[9] \cdot [x] = [5]$ in \mathbb{Z}_{43} using the extended Euclidean algorithm.
- (8) (a) Check whether the function

$$f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}, (x, y) \mapsto x + 2y,$$

is injective, surjective, bijective.

(b) Let $f: A \to B$ and $g: B \to C$. Prove that if $g \circ f$ is injective, then f is injective.