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Implications
Let P,Q be statements.

statement equivalent meanings negation

P ⇒ Q IfP is true, thenQ is true.
∼ P ∨ Q P∧ ∼ Q
∼ Q ⇒∼ P (contrapositive)

P ⇔ Q Q is true if and only ifP is true. P ⇔∼ Q
(P ⇒ Q) ∧ (P ⇐ Q) ∼ P ⇔ Q

How to prove P ⇒ Q:

I direct: Assume P. Show Q.

I contrapositive: Assume ∼ Q. Show ∼ P.

I by contradiction (only as last resort): Assume P and ∼ Q.
Show some contradiction.

How to prove P ⇔ Q:

Show P ⇒ Q and show P ⇐ Q.



Equivalent statements

Theorem
Let f : A→ B be a function. Then the following are equivalent
(TFAE):

1. f is bijective.

2. ∀y ∈ B ∃ unique x ∈ A : f (x) = y .

3. f has an inverse function.

4. ∃`, r : B → A : ` ◦ f = idA and f ◦ r = idB .

This Theorem states that 1.⇔ 2.⇔ 3.⇔ 4.
Instead of showing 3 times ⇔, such statements can be proved
more efficiently as a cycle of implications:

1.⇒ 2.⇒ 3.⇒ 4.⇒ 1.



Quantified statements
Let A be a set, P(x) be a statement for x ∈ A.

statement meaning negation

∀x ∈ A : P(x) For all x ∈ A,P(x) is true. P(x) is not true for some x ∈ A.
∃x ∈ A : ∼ P(x)

∃x ∈ A : P(x) There exists x ∈ A P(x) is not true for all x ∈ A.
such that P(x) is true. ∀x ∈ A : ∼ P(x)

How to prove ∀x ∈ A : P(x)

Let x ∈ A (arbitrary but fixed). Show P(x).

How to refute ∀x ∈ A : P(x)

Give concrete explicit x ∈ A that does not satisfy P(x).

How to prove ∃x ∈ A : P(x)

Give a concrete explicit x ∈ A that satisfies P(x).

How to refute ∃x ∈ A : P(x)

Show ∀x ∈ A : ∼ P(x).



Quantifiers and implications in
Calculus



Calculus: Informally limx→c f (x) = L means that f (x) is
arbitrarily close to L provided that x is sufficiently close to c .
More precisely

Definition (Limit of a function)

Let c ∈ R and f : R− {c} → R. Then limx→c f (x) = L if

∀ε ∈ R+ ∃δ ∈ R+ ∀x ∈ R− {c} : |x − c | < δ ⇒ |f (x)− L| < ε

Diagram taken from Hammack, Book of Proof, 2018.

Definition of a Limit 247

Standard practice uses the Greek letters ε (epsilon) and δ (delta) for
variables representing how close f (x) is to L, and x is to c. For instance,
x is within a distance of δ from c if and only if c − δ < x < c + δ, that is,
−δ < x− c < δ, or |x− c| < δ. So for any real number δ > 0 (no matter how
small) the statement |x− c| < δ means that x is within δ units from c.

c−δ c x c+δ
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Likewise | f (x)−L| < ε means that f (x) is within ε units from L. Let’s apply
these ideas to Definition 13.1, and transform it line by line.

Informal definition Precise definition
lim
x→c

f (x)= L means that lim
x→c

f (x)= L means that
f (x) is arbitrarily close to L for any ε> 0, | f (x)−L| < ε

provided that provided that
x is sufficiently close to c 0< |x− c| < δ for some δ> 0.

We have arrived at a precise definition of a limit.

Definition 13.2 (Precise definition of a limit)
Suppose f : X →R is a function, where X ⊆R, and c ∈R. Then lim

x→c
f (x)= L

means that for any real ε> 0 (no matter how small), there is a real number
δ> 0 for which | f (x)−L| < ε provided that 0< |x− c| < δ.

Figure 13.1 illustrates this. For any ε> 0, no matter how small, consider
the narrow shaded band of points on the plane whose y-coordinates are
between y = L−ε and y = L+ε. Given this ε, we can find another number
δ> 0 such that the point (x, f (x)) is in the shaded band whenever x is within
δ units from c. In other words, | f (x)−L| < ε provided that 0< |x− c| < δ.
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Figure 13.1. A graphic description of the limit definition.
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How to prove ∀ε ∈ R+ ∃δ ∈ R+ ∀x ∈ R− {c} :
|x − c | < δ ⇒ |f (x)− L| < ε

Example

Prove limx→0 2x sin( 1
x ) = 0.

I (∀) Let ε > 0 arbitrary, fixed for the remainder of the proof.

I (∃) Find δ > 0 (δ may depend on ε) such that ∀x 6= c :
|x − c | < δ ⇒ |f (x)− L| < ε. (*)

I (∀) Let x ∈ R− {0} arbitrary, fixed. For (*) consider

|f (x)− L| =

∣∣∣∣2x sin(
1

x
)− 0

∣∣∣∣ = 2|x | | sin(
1

x
)|︸ ︷︷ ︸

≤1

≤ 2|x |

I The latter is < ε if |x | < ε/2.

I We found δ := ε/2 such that |x − 0| < δ ⇒ |f (x)− 0| < ε.

I Thus limx→0 2x sin( 1
x ) = 0.



How to prove a limit does not exist?
We need to show that for all L ∈ R,

∼ (∀ε ∈ R+ ∃δ ∈ R+ ∀x ∈ R−{c} : |x−c | < δ ⇒ |f (x)−L| < ε),

equivalently,

∀L ∈ R ∃ε ∈ R+ ∀δ ∈ R+ ∃x ∈ R−{c} : |x−c| < δ and |f (x)−L| ≥ ε.

Example
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6Prove limx→0
1
x does not exist.

I (∀) Let L ∈ R+, (∃) guess ε > 0,
(∀) let δ > 0 arbitrary.

I (∃) Find x ∈ R− {0} :
|x − 0| < δ and | 1x − L| ≥ ε.

I Say 0 < x < δ and 1
x − L ≥ ε.

Hence 1
ε+L ≥ x and e.g. x := min( δ2 ,

1
ε+L) works!

I Thus limx→0
1
x cannot be any L ∈ R+.



Sum rule for limits
limx→c f (x) = L if ∀ε > 0 ∃δ > 0 ∀x 6= c : |x − c | < δ ⇒ |f (x)− L| < ε

Theorem
If limx→c f (x) and limx→c g(x) both exist, then

lim
x→c

[f (x) + g(x)] = lim
x→c

f (x) + lim
x→c

g(x).

Proof.
I Let limx→c f (x) =: L and limx→c g(x) =: M. Show

limx→c [f (x) + g(x)] = L + M.

I Let ε > 0 arbitrary. Find δ > 0 such that
|x − c | < δ ⇒ |f (x) + g(x)− L−M| < ε.

I |f (x) + g(x)− L−M| ≤ |f (x)− L|+ |g(x)−M| by the
triangle inequality.

I We have δ1 > 0: |x − c | < δ1 ⇒ |f (x)− L| < ε
2 ,

δ2 > 0: |x − c| < δ2 ⇒ |g(x)−M| < ε
2 .

I Then |x − c | < min(δ1, δ2)︸ ︷︷ ︸
=:δ

⇒ |f (x) + g(x)− L−M| < ε

2
+
ε

2︸ ︷︷ ︸
=ε

.



I Do you want to know more? Take Math 3001 – Analysis


