Review 2: Logic

Peter Mayr

CU, Discrete Math, December 4, 2020

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Implications

Let P, Q be statements.

statement	equivalent meanings	negation	
$P \Rightarrow Q$	If <i>P</i> is true, then <i>Q</i> is true.		
	$\sim P \lor Q$	$P \wedge \sim Q$	
	$\sim Q \Rightarrow \sim P$ (contrapositive)		
$P \Leftrightarrow Q$	Q is true if and only if P is true.	$P \Leftrightarrow \sim Q$	
	$(P \Rightarrow Q) \land (P \Leftarrow Q)$	$\sim P \Leftrightarrow Q$	

How to prove $P \Rightarrow Q$:

- **direct:** Assume *P*. Show *Q*.
- contrapositive: Assume $\sim Q$. Show $\sim P$.
- by contradiction (only as last resort): Assume P and ~ Q. Show some contradiction.

How to prove $P \Leftrightarrow Q$:

Show $P \Rightarrow Q$ and show $P \Leftarrow Q$.

Equivalent statements

Theorem

Let $f : A \rightarrow B$ be a function. Then the following are equivalent (TFAE):

- 1. f is bijective.
- 2. $\forall y \in B \exists$ unique $x \in A$: f(x) = y.
- 3. f has an inverse function.
- 4. $\exists \ell, r \colon B \to A \colon \ell \circ f = \mathrm{id}_A \text{ and } f \circ r = \mathrm{id}_B.$

This Theorem states that $1. \Leftrightarrow 2. \Leftrightarrow 3. \Leftrightarrow 4$. Instead of showing 3 times \Leftrightarrow , such statements can be proved more efficiently as a cycle of implications:

$$1. \Rightarrow 2. \Rightarrow 3. \Rightarrow 4. \Rightarrow 1.$$

Quantified statements

Let A be a set, P(x) be a statement for $x \in A$.

statement	meaning	negation
$\forall x \in A \colon P(x)$	For all $x \in A$, $P(x)$ is true.	$P(x)$ is not true for some $x \in A$.
		$\exists x \in A: \sim P(x)$
$\exists x \in A: P(x)$	There exists $x \in A$	$P(x)$ is not true for all $x \in A$.
	such that $P(x)$ is true.	$\forall x \in A: \ \sim P(x)$

How to prove $\forall x \in A \colon P(x)$

Let $x \in A$ (arbitrary but fixed). Show P(x).

How to refute $\forall x \in A \colon P(x)$

Give concrete explicit $x \in A$ that does not satisfy P(x).

How to prove $\exists x \in A \colon P(x)$

Give a concrete explicit $x \in A$ that satisfies P(x).

How to refute $\exists x \in A : P(x)$ Show $\forall x \in A : \sim P(x)$.

Quantifiers and implications in Calculus

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Calculus: Informally $\lim_{x\to c} f(x) = L$ means that f(x) is arbitrarily close to L provided that x is sufficiently close to c. More precisely

Definition (Limit of a function) Let $c \in \mathbb{R}$ and $f : \mathbb{R} - \{c\} \to \mathbb{R}$. Then $\lim_{x\to c} f(x) = L$ if $\forall \varepsilon \in \mathbb{R}^+ \exists \delta \in \mathbb{R}^+ \forall x \in \mathbb{R} - \{c\} : |x - c| < \delta \Rightarrow |f(x) - L| < \varepsilon$

Diagram taken from Hammack, Book of Proof, 2018.

How to prove $\forall \varepsilon \in \mathbb{R}^+ \exists \delta \in \mathbb{R}^+ \forall x \in \mathbb{R} - \{c\}$: $|x - c| < \delta \Rightarrow |f(x) - L| < \varepsilon$

Example

Prove $\lim_{x\to 0} 2x \sin(\frac{1}{x}) = 0$.

• (\forall) Let $\varepsilon > 0$ arbitrary, fixed for the remainder of the proof.

► (∃) Find
$$\delta > 0$$
 (δ may depend on ε) such that $\forall x \neq c$:
 $|x - c| < \delta \Rightarrow |f(x) - L| < \varepsilon$. (*)

▶ (\forall) Let $x \in \mathbb{R} - \{0\}$ arbitrary, fixed. For (*) consider

$$|f(x) - L| = \left| 2x \sin\left(\frac{1}{x}\right) - 0 \right| = 2|x| \underbrace{|\sin\left(\frac{1}{x}\right)|}_{\leq 1} \leq 2|x|$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• The latter is $< \varepsilon$ if $|x| < \varepsilon/2$.

• We found $\delta := \varepsilon/2$ such that $|x - 0| < \delta \Rightarrow |f(x) - 0| < \varepsilon$.

• Thus
$$\lim_{x\to 0} 2x \sin(\frac{1}{x}) = 0$$

How to prove a limit does not exist?

We need to show that for all $L \in \mathbb{R}$,

 $\sim (\forall \varepsilon \in \mathbb{R}^+ \exists \delta \in \mathbb{R}^+ \forall x \in \mathbb{R} - \{c\} \colon |x - c| < \delta \Rightarrow |f(x) - L| < \varepsilon),$

equivalently,

 $\forall L \in \mathbb{R} \ \exists \varepsilon \in \mathbb{R}^+ \ \forall \delta \in \mathbb{R}^+ \ \exists x \in \mathbb{R} - \{c\} \colon \ |x - c| < \delta \text{ and } |f(x) - L| \ge \varepsilon.$

Example

Sum rule for limits

 $\lim_{x\to c} f(x) = L \text{ if } \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \neq c \colon \ |x-c| < \delta \Rightarrow |f(x) - L| < \varepsilon$ Theorem

If $\lim_{x\to c} f(x)$ and $\lim_{x\to c} g(x)$ both exist, then

$$\lim_{x\to c} [f(x) + g(x)] = \lim_{x\to c} f(x) + \lim_{x\to c} g(x).$$

Proof.

Let $\lim_{x\to c} f(x) =: L$ and $\lim_{x\to c} g(x) =: M$. Show $\lim_{x\to c} [f(x) + g(x)] = L + M$.

• Let
$$\varepsilon > 0$$
 arbitrary. Find $\delta > 0$ such that $|x - c| < \delta \Rightarrow |f(x) + g(x) - L - M| < \varepsilon$.

► $|f(x) + g(x) - L - M| \le |f(x) - L| + |g(x) - M|$ by the triangle inequality.

► We have
$$\delta_1 > 0$$
: $|x - c| < \delta_1 \Rightarrow |f(x) - L| < \frac{\varepsilon}{2}$,
 $\delta_2 > 0$: $|x - c| < \delta_2 \Rightarrow |g(x) - M| < \frac{\varepsilon}{2}$.
► Then $|x - c| < \underbrace{\min(\delta_1, \delta_2)}_{=:\delta} \Rightarrow |f(x) + g(x) - L - M| < \underbrace{\frac{\varepsilon}{2} + \frac{\varepsilon}{2}}_{=:\delta}$.

