Review 2: Logic

Peter Mayr

CU, Discrete Math, December 4, 2020

Implications

Let P, Q be statements.

statement	equivalent meanings	negation
$P \Rightarrow Q$	If P is true, then Q is true.	
	$\sim P \vee Q$	$P \wedge \sim Q$
	$\sim Q \Rightarrow \sim P$ (contrapositive)	
$P \Leftrightarrow Q$	Q is true if and only if P is true.	$P \Leftrightarrow \sim Q$
	$(P \Rightarrow Q) \wedge(P \Leftarrow Q)$	$\sim P \Leftrightarrow Q$

How to prove $P \Rightarrow Q$:

- direct: Assume P. Show Q.
- contrapositive: Assume $\sim Q$. Show $\sim P$.
- by contradiction (only as last resort): Assume P and $\sim Q$. Show some contradiction.

How to prove $P \Leftrightarrow Q$:
Show $P \Rightarrow Q$ and show $P \Leftarrow Q$.

Equivalent statements

Theorem
Let $f: A \rightarrow B$ be a function. Then the following are equivalent (TFAE):

1. f is bijective.
2. $\forall y \in B \exists$ unique $x \in A: f(x)=y$.
3. f has an inverse function.
4. $\exists \ell, r: B \rightarrow A: \ell \circ f=\mathrm{id}_{A}$ and $f \circ r=\mathrm{id}_{B}$.

This Theorem states that $1 . \Leftrightarrow 2 . \Leftrightarrow 3 . \Leftrightarrow 4$. Instead of showing 3 times \Leftrightarrow, such statements can be proved more efficiently as a cycle of implications:

$$
\text { 1. } \Rightarrow 2 . \Rightarrow 3 . \Rightarrow 4 . \Rightarrow 1
$$

Quantified statements

Let A be a set, $P(x)$ be a statement for $x \in A$.

statement	meaning	negation
$\forall x \in A: P(x)$	For all $x \in A, P(x)$ is true.	$P(x)$ is not true for some $x \in A$. $\exists x \in A: \sim P(x)$
$\exists x \in A: P(x)$	There exists $x \in A$ such that $P(x)$ is true.	$P(x)$ is not true for all $x \in A$. $\quad \forall x \in A: \sim P(x)$

How to prove $\forall x \in A: P(x)$
Let $x \in A$ (arbitrary but fixed). Show $P(x)$.
How to refute $\forall x \in A: P(x)$
Give concrete explicit $x \in A$ that does not satisfy $P(x)$.
How to prove $\exists x \in A: P(x)$
Give a concrete explicit $x \in A$ that satisfies $P(x)$.
How to refute $\exists x \in A: P(x)$
Show $\forall x \in A: \sim P(x)$.

Quantifiers and implications in Calculus

Calculus: Informally $\lim _{x \rightarrow c} f(x)=L$ means that $f(x)$ is arbitrarily close to L provided that x is sufficiently close to c. More precisely

Definition (Limit of a function)

Let $c \in \mathbb{R}$ and $f: \mathbb{R}-\{c\} \rightarrow \mathbb{R}$. Then $\lim _{x \rightarrow c} f(x)=L$ if

$$
\forall \varepsilon \in \mathbb{R}^{+} \exists \delta \in \mathbb{R}^{+} \forall x \in \mathbb{R}-\{c\}:|x-c|<\delta \Rightarrow|f(x)-L|<\varepsilon
$$

Diagram taken from Hammack, Book of Proof, 2018.

How to prove $\forall \varepsilon \in \mathbb{R}^{+} \exists \delta \in \mathbb{R}^{+} \forall x \in \mathbb{R}-\{c\}$:
$|x-c|<\delta \Rightarrow|f(x)-L|<\varepsilon$
Example
Prove $\lim _{x \rightarrow 0} 2 x \sin \left(\frac{1}{x}\right)=0$.

- (\forall) Let $\varepsilon>0$ arbitrary, fixed for the remainder of the proof.
- (\exists) Find $\delta>0$ (δ may depend on ε) such that $\forall x \neq c$:

$$
\begin{equation*}
|x-c|<\delta \Rightarrow|f(x)-L|<\varepsilon . \tag{}
\end{equation*}
$$

- (\forall) Let $x \in \mathbb{R}-\{0\}$ arbitrary, fixed. For $\left({ }^{*}\right)$ consider

$$
\left.|f(x)-L|=\left|2 x \sin \left(\frac{1}{x}\right)-0\right|=2|x||\underbrace{\left.\sin \left(\frac{1}{x}\right) \right\rvert\,}_{\leq 1} \leq 2| x \right\rvert\,
$$

- The latter is $<\varepsilon$ if $|x|<\varepsilon / 2$.
- We found $\delta:=\varepsilon / 2$ such that $|x-0|<\delta \Rightarrow|f(x)-0|<\varepsilon$.
- Thus $\lim _{x \rightarrow 0} 2 x \sin \left(\frac{1}{x}\right)=0$.

How to prove a limit does not exist?

We need to show that for all $L \in \mathbb{R}$,
$\sim\left(\forall \varepsilon \in \mathbb{R}^{+} \exists \delta \in \mathbb{R}^{+} \forall x \in \mathbb{R}-\{c\}:|x-c|<\delta \Rightarrow|f(x)-L|<\varepsilon\right)$,
equivalently,
$\forall L \in \mathbb{R} \exists \varepsilon \in \mathbb{R}^{+} \forall \delta \in \mathbb{R}^{+} \exists x \in \mathbb{R}-\{c\}:|x-c|<\delta$ and $|f(x)-L| \geq \varepsilon$.
Example
Prove $\lim _{x \rightarrow 0} \frac{1}{x}$ does not exist.

- (\forall) Let $L \in \mathbb{R}^{+},(\exists)$ guess $\varepsilon>0$, (\forall) let $\delta>0$ arbitrary.
- (\exists) Find $x \in \mathbb{R}-\{0\}$:
$|x-0|<\delta$ and $\left|\frac{1}{x}-L\right| \geq \varepsilon$.

- Say $0<x<\delta$ and $\frac{1}{x}-L \geq \varepsilon$.

Hence $\frac{1}{\varepsilon+L} \geq x$ and e.g. $x:=\min \left(\frac{\delta}{2}, \frac{1}{\varepsilon+L}\right)$ works!

- Thus $\lim _{x \rightarrow 0} \frac{1}{x}$ cannot be any $L \in \mathbb{R}^{+}$.

Sum rule for limits

$\lim _{x \rightarrow c} f(x)=L$ if $\forall \varepsilon>0 \exists \delta>0 \forall x \neq c:|x-c|<\delta \Rightarrow|f(x)-L|<\varepsilon$
Theorem
If $\lim _{x \rightarrow c} f(x)$ and $\lim _{x \rightarrow c} g(x)$ both exist, then

$$
\lim _{x \rightarrow c}[f(x)+g(x)]=\lim _{x \rightarrow c} f(x)+\lim _{x \rightarrow c} g(x)
$$

Proof.

- Let $\lim _{x \rightarrow c} f(x)=: L$ and $\lim _{x \rightarrow c} g(x)=: M$. Show $\lim _{x \rightarrow c}[f(x)+g(x)]=L+M$.
- Let $\varepsilon>0$ arbitrary. Find $\delta>0$ such that

$$
|x-c|<\delta \Rightarrow|f(x)+g(x)-L-M|<\varepsilon .
$$

- $|f(x)+g(x)-L-M| \leq|f(x)-L|+|g(x)-M|$ by the triangle inequality.
- We have $\delta_{1}>0:|x-c|<\delta_{1} \Rightarrow|f(x)-L|<\frac{\varepsilon}{2}$,

$$
\delta_{2}>0:|x-c|<\delta_{2} \Rightarrow|g(x)-M|<\frac{\varepsilon}{2} .
$$

- Then $|x-c|<\underbrace{\min \left(\delta_{1}, \delta_{2}\right)}_{=: \delta} \Rightarrow|f(x)+g(x)-L-M|<\underbrace{\frac{\varepsilon}{2}+\frac{\varepsilon}{2}}_{=\varepsilon}$.
- Do you want to know more? Take Math 3001 - Analysis

