Functions 4

Peter Mayr

CU, Discrete Math, November 23, 2020

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Inverse functions

Inverses

Example

For $f: \mathbb{R} \to \mathbb{R}^+$, $x \mapsto e^x$ and $g: \mathbb{R}^+ \to \mathbb{R}$, $x \mapsto \log x$, $g \circ f: \mathbb{R} \to \mathbb{R}$, $x \mapsto \log e^x = x$ $f \circ g: \mathbb{R}^+ \to \mathbb{R}^+$, $x \mapsto e^{\log x} = x$

Here f and g undo each other (are inverses of each other).

Definition

The **inverse relation** of $R \subseteq A \times B$ is

$$R^{-1} := \{(b, a) : (a, b) \in R\}.$$

 R^{-1} is a relation from B to A but usually not a function (even if R is a function).

Inverses and bijectivity

Theorem

 $f: A \rightarrow B$ is bijective iff its inverse relation f^{-1} is a function.

Proof.

 \Rightarrow Assume *f* is bijective.

Since f is surjective, $\forall b \in B \exists a \in A : f(a) = b$.

▶ This *a* is unique since *f* is injective.

► Hence
$$\forall b \in B \exists$$
 unique $a \in A$: $\underbrace{(a, b) \in f}_{(b,a) \in f^{-1}}$.

Thus f^{-1} is a function from *B* to *A*.

$$\Leftarrow$$
 Assume f^{-1} is a function.

► Then
$$\forall b \in B \exists$$
 unique $a \in A$: $\underbrace{(b, a) \in f^{-1}}_{(a,b) \in f}$.

Thus f is surjective and injective.

Definition

Let $f: A \to B$ be bijective. Then $f^{-1}: B \to A$ is the **inverse** function of f.

```
Let id_A : A \to A, x \mapsto x, denote the identity map on A.
```

Lemma

Let $f: A \to B$ be bijective. Then $f^{-1} \circ f = id_A$ and $f \circ f^{-1} = id_B$.

Proof.

ΗW

Note (to be proved in 2 slides).

If there exist functions $I, r: B \to A$ that act like the inverse when composed with $f: A \to B$ on either side, then they **are** f^{-1} . Hence instead of checking that f is bijective, it suffices to find f^{-1} (and check that $f^{-1} \circ f = id_A, f \circ f^{-1} = id_B$).

Example

Find the inverse of $f : \mathbb{R} \to \mathbb{R}, x \mapsto x^3 + 1$, if it exists.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

1. $f^{-1} = \{(x^3 + 1, x) : x \in \mathbb{R}\}$ is not very useful.

2. Instead solve y = f(x) for x.

y = x³ + 1 yields
$$\sqrt[3]{y-1} = x$$
.
f⁻¹: ℝ → ℝ, y ↦ $\sqrt[3]{y-1}$

Note that $f^{-1} \circ f = \operatorname{id}_{\mathbb{R}}, \ f \circ f^{-1} = \operatorname{id}_{\mathbb{R}}.$

If it behaves like the inverse, it is the inverse

Lemma

Let $f: A \to B$, and $I, r: B \to A$ such that $I \circ f = id_A$ and $f \circ r = id_B$. Then f is bijective and $I = r = f^{-1}$.

Proof.

- Since $I \circ f = id_A$ is injective, f is injective by a previous Thm.
- Since $f \circ r = id_B$ is surjective, f is surjective by previous Thm.

• So f is bijective and has an inverse f^{-1} .

► To show that
$$l = f^{-1}$$
 consider
 $l \circ (f \circ f^{-1}) = l \circ id_B = l$
 $(l \circ f) \circ f^{-1} = id_A \circ f^{-1} = f^{-1}$
Since the left hand sides are the same by associativity,
 $l = f^{-1}$.

•
$$r = f^{-1}$$
 follows similarly.

Example

Find the inverse of $f : \mathbb{R} \to \mathbb{R}^+_0, x \mapsto x^2$, if it exists.

• Let
$$y \in \mathbb{R}_0^+$$
. Solve $y = f(x)$ for x .

•
$$\sqrt{y} = x$$
 yields $g: \mathbb{R}^+_0 \to \mathbb{R}, y \to \sqrt{y}$.

Check that

$$g(f(x)) = x$$
 for all $x \in \mathbb{R}$
 $f(g(y)) = y$ for all $y \in \mathbb{R}_0^+$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

• Hence $g = f^{-1}$ and f is bijective.

Example

Find the inverse of $f : \mathbb{R}^2 \to \mathbb{R}^2$, $(x, y) \mapsto ((x^2 + 1)y, x^3)$. For $(u, v) \in \mathbb{R}^2$ solve f(x, y) = (u, v): $(x^2 + 1)y = u$ $x^3 = v$ Then $x = \sqrt[3]{v}$ and $y = \frac{u}{\sqrt[3]{v^2+1}}$. $f^{-1} : \mathbb{R}^2 \to \mathbb{R}^2$, $(u, v) \mapsto (\sqrt[3]{v}, \frac{u}{\sqrt[3]{v^2+1}})$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The inverse of a composition

Lemma For $f: A \rightarrow B, g: B \rightarrow C$ bijective

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$$

To "undo" $g \circ f$, the inverses need to be composed in the opposite order.

Proof.

Show that $f^{-1} \circ g^{-1}$ behaves like the inverse of $f \circ g$:

$$(f^{-1} \circ g^{-1}) \circ (g \circ f) = f^{-1} \circ \mathrm{id}_B \circ f = \mathrm{id}_A$$

(1)

Similarly check $(g \circ f) \circ (f^{-1} \circ g^{-1})$.