Functions 4

Peter Mayr

CU, Discrete Math, November 23, 2020

Inverse functions

Inverses

Example

For $f: \mathbb{R} \rightarrow \mathbb{R}^{+}, x \mapsto e^{x}$ and $g: \mathbb{R}^{+} \rightarrow \mathbb{R}, x \mapsto \log x$,
$g \circ f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto \log e^{x}=x$
$f \circ g: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}, x \mapsto e^{\log x}=x$
Here f and g undo each other (are inverses of each other).
Definition
The inverse relation of $R \subseteq A \times B$ is

$$
R^{-1}:=\{(b, a):(a, b) \in R\} .
$$

R^{-1} is a relation from B to A but usually not a function (even if R is a function).

Inverses and bijectivity

Theorem

$f: A \rightarrow B$ is bijective iff its inverse relation f^{-1} is a function.
Proof.
\Rightarrow Assume f is bijective.

- Since f is surjective, $\forall b \in B \exists a \in A: f(a)=b$.
- This a is unique since f is injective.
- Hence $\forall b \in B \exists$ unique $a \in A: \underbrace{(a, b) \in f}_{(b, a) \in f^{-1}}$.

Thus f^{-1} is a function from B to A.
\Leftarrow Assume f^{-1} is a function.

- Then $\forall b \in B \exists$ unique $a \in A: \underbrace{(b, a) \in f^{-1}}_{(a, b) \in f}$.

Thus f is surjective and injective.

Definition

Let $f: A \rightarrow B$ be bijective. Then $f^{-1}: B \rightarrow A$ is the inverse function of f.
Let $\mathrm{id}_{A}: A \rightarrow A, x \mapsto x$, denote the identity map on A.
Lemma
Let $f: A \rightarrow B$ be bijective. Then $f^{-1} \circ f=\operatorname{id}_{A}$ and $f \circ f^{-1}=\operatorname{id}_{B}$.
Proof.
HW
Note (to be proved in 2 slides).
If there exist functions $I, r: B \rightarrow A$ that act like the inverse when composed with $f: A \rightarrow B$ on either side, then they are f^{-1}. Hence instead of checking that f is bijective, it suffices to find f^{-1} (and check that $f^{-1} \circ f=\mathrm{id}_{A}, f \circ f^{-1}=\mathrm{id}_{B}$).

Example

Find the inverse of $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto x^{3}+1$, if it exists.

1. $f^{-1}=\left\{\left(x^{3}+1, x\right): x \in \mathbb{R}\right\}$ is not very useful.
2. Instead solve $y=f(x)$ for x.

- $y=x^{3}+1$ yields $\sqrt[3]{y-1}=x$.
- $f^{-1}: \mathbb{R} \rightarrow \mathbb{R}, y \mapsto \sqrt[3]{y-1}$

Note that $f^{-1} \circ f=\mathrm{id}_{\mathbb{R}}, f \circ f^{-1}=\mathrm{id}_{\mathbb{R}}$.

If it behaves like the inverse, it is the inverse

Lemma

Let $f: A \rightarrow B$, and $I, r: B \rightarrow A$ such that $l \circ f=\mathrm{id}_{A}$ and $f \circ r=\operatorname{id}_{B}$. Then f is bijective and $I=r=f^{-1}$.

Proof.

- Since $l \circ f=\operatorname{id}_{A}$ is injective, f is injective by a previous Thm.
- Since $f \circ r=\operatorname{id}_{B}$ is surjective, f is surjective by previous Thm.
- So f is bijective and has an inverse f^{-1}.
- To show that $I=f^{-1}$ consider
$l \circ\left(f \circ f^{-1}\right)=I \circ \operatorname{id}_{B}=l$
$(l \circ f) \circ f^{-1}=\operatorname{id}_{A} \circ f^{-1}=f^{-1}$
Since the left hand sides are the same by associativity, $I=f^{-1}$.
- $r=f^{-1}$ follows similarly.

Example

Find the inverse of $f: \mathbb{R} \rightarrow \mathbb{R}_{0}^{+}, x \mapsto x^{2}$, if it exists.

- Let $y \in \mathbb{R}_{0}^{+}$. Solve $y=f(x)$ for x.
- $\sqrt{y}=x$ yields $g: \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}, y \rightarrow \sqrt{y}$.
- Check that

$$
\begin{array}{ll}
g(f(x))=x & \text { for all } x \in \mathbb{R} \\
f(g(y))=y & \text { for all } y \in \mathbb{R}_{0}^{+}
\end{array}
$$

- Hence $g=f^{-1}$ and f is bijective.

Example

Find the inverse of $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},(x, y) \mapsto\left(\left(x^{2}+1\right) y, x^{3}\right)$.

- For $(u, v) \in \mathbb{R}^{2}$ solve $f(x, y)=(u, v)$:

$$
\begin{gathered}
\left(x^{2}+1\right) y=u \\
x^{3}=v
\end{gathered}
$$

- Then $x=\sqrt[3]{v}$ and $y=\frac{u}{\sqrt[3]{v^{2}}+1}$.
- $f^{-1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},(u, v) \mapsto\left(\sqrt[3]{v}, \frac{u}{\sqrt[3]{v^{2}}+1}\right)$.

The inverse of a composition

Lemma
For $f: A \rightarrow B, g: B \rightarrow C$ bijective

$$
(g \circ f)^{-1}=f^{-1} \circ g^{-1}
$$

To "undo" $g \circ f$, the inverses need to be composed in the opposite order.

Proof.
Show that $f^{-1} \circ g^{-1}$ behaves like the inverse of $f \circ g$:

$$
\left(f^{-1} \circ g^{-1}\right) \circ(g \circ f)=f^{-1} \circ \operatorname{id}_{B} \circ f=\operatorname{id}_{A}
$$

Similarly check $(g \circ f) \circ\left(f^{-1} \circ g^{-1}\right)$.

