Functions

Peter Mayr

CU, Discrete Math, November 20, 2020

Counting functions

The number of functions $f:\{1,2, \ldots, k\} \rightarrow\{1, \ldots, n\}$

Let $k, n \in \mathbb{N}_{0}$.

- all functions:
[For each $i \in\{1, \ldots, k\}$ choose an image $f(i) \in\{1, \ldots, n\}$ without restrictions.]
- injective functions $(n \geq k): n(n-1) \cdots(n-k+1)=\frac{n!}{(n-k)!}$ [Choose $f(i)$ without repetitions!]
- surjective functions:

Example

Number of surjective functions $\{1, \ldots, k\} \rightarrow\{1, \ldots, n\}$:

1. $n=1$, all functions are surjective:
2. $n=2$, all functions minus the non-surjective ones, i.e., those that map into proper subsets $\{1\},\{2\}$: $\quad 2^{k}-1^{k}-1^{k}$
3. $n=3$, subtract all functions into 2 -element subsets (double counting those into 1 -element subsets!): $\quad 3^{k}-3 \cdot 2^{k}+3 \cdot 1^{k}$

Composition of functions

Composing functions

Definition
Let $f: A \rightarrow B, g: B \rightarrow C$. The composition of f with g is

$$
g \circ f: A \rightarrow C, x \mapsto g(f(x)) .
$$

Example
For $f: \mathbb{Z} \rightarrow \mathbb{Z}, x \mapsto x+1$ and $g: \mathbb{Z} \rightarrow \mathbb{Z}, x \mapsto x^{2}$,
$g \circ f: \mathbb{Z} \rightarrow \mathbb{Z}, x \mapsto(x+1)^{2}$
$f \circ g: \mathbb{Z} \rightarrow \mathbb{Z}, x \mapsto x^{2}+1$
Note the order: composition is not commutative.

Properties of function composition

Theorem (Function composition is associative)
For $f: A \rightarrow B, g: B \rightarrow C, h: C \rightarrow D$,

$$
(h \circ g) \circ f=h \circ(g \circ f)
$$

How to show equality between functions?
Proof.
Show that $\forall x \in A:((h \circ g) \circ f)(x)=(h \circ(g \circ f))(x)$
Let $x \in A$. Then
$((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x)))$,
$(h \circ(g \circ f))(x)=h((g \circ f)(x))=h(g(f(x)))$.

Theorem
Let $f: A \rightarrow B, g: B \rightarrow C$.

1. If $g \circ f$ is injective, then f is injective.
2. If $g \circ f$ is surjective, then g is surjective.

Proof.
By contraposition, HW

