Functions

Peter Mayr

CU, Discrete Math, November 20, 2020

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Counting functions

The number of functions $f: \{1, 2, \ldots, k\} \rightarrow \{1, \ldots, n\}$

- Let $k, n \in \mathbb{N}_0$.
 - ▶ all functions: n^k [For each $i \in \{1, ..., k\}$ choose an image $f(i) \in \{1, ..., n\}$ without restrictions.]
 - ▶ injective functions $(n \ge k)$: $n(n-1)\cdots(n-k+1) = \frac{n!}{(n-k)!}$ [Choose f(i) without repetitions!]
 - surjective functions: ???

Example

Number of surjective functions $\{1, \ldots, k\} \rightarrow \{1, \ldots, n\}$:

- 1. n = 1, all functions are surjective:
- 2. n = 2, all functions minus the non-surjective ones, i.e., those that map into proper subsets $\{1\}, \{2\}: 2^k 1^k 1^k$
- 3. n = 3, subtract all functions into 2-element subsets (double counting those into 1-element subsets!): $3^k 3 \cdot 2^k + 3 \cdot 1^k$

1

Composition of functions

Composing functions

Definition

Let $f: A \rightarrow B, g: B \rightarrow C$. The **composition** of f with g is

$$g \circ f \colon A \to C, x \mapsto g(f(x)).$$

Example

For $f: \mathbb{Z} \to \mathbb{Z}$, $x \mapsto x + 1$ and $g: \mathbb{Z} \to \mathbb{Z}$, $x \mapsto x^2$, $g \circ f: \mathbb{Z} \to \mathbb{Z}$, $x \mapsto (x + 1)^2$ $f \circ g: \mathbb{Z} \to \mathbb{Z}$, $x \mapsto x^2 + 1$

Note the order: composition is not commutative.

Properties of function composition

Theorem (Function composition is associative) For $f: A \rightarrow B, g: B \rightarrow C, h: C \rightarrow D$,

$$(h \circ g) \circ f = h \circ (g \circ f).$$

How to show equality between functions?

Proof.

Show that $\forall x \in A$: $((h \circ g) \circ f)(x) = (h \circ (g \circ f))(x)$ Let $x \in A$. Then $((h \circ g) \circ f)(x) = (h \circ g)(f(x)) = h(g(f(x))),$ $(h \circ (g \circ f))(x) = h((g \circ f)(x)) = h(g(f(x))).$

Theorem

Let $f: A \to B, g: B \to C$.

1. If $g \circ f$ is injective, then f is injective.

2. If $g \circ f$ is surjective, then g is surjective.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proof.

By contraposition, HW