Functions 1

Peter Mayr

CU, Discrete Math, November 16, 2020

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Functions are special relations

Example $f(x) = x^2$ on \mathbb{R} is determined by its graph $f = \{(x, x^2) : x \in \mathbb{R}\}$. Definition

Let A, B be sets. A **function** f from A to B is a relation from A to B such that

$$\forall x \in A \exists$$
 unique $y \in B$: $(x, y) \in f$.

Then we usually write f(x) = y [instead of $(x, y) \in f$] and

 $f: A \rightarrow B, x \mapsto f(x).$

[Read: f is the function from A to B that maps x to f(x).] Example

 $R = \{(y^2, y) \; : \; y \in \mathbb{R}\}$ is not a function

- from \mathbb{R} to \mathbb{R} because $\not\exists y \in \mathbb{R} \colon (-2, y) \in R$;
- ▶ from \mathbb{R}^+_0 to \mathbb{R} because $(1,-1), (1,1) \in R$ → () →

Failing to be a function

A relation $R \subseteq A \times B$ is **not a function** if

1. some $x \in A$ is not paired up with any $y \in B$;

2. some $x \in A$ is paired up with more than one element in B.

イロト 不得 トイヨト イヨト

3

Definition

A function $f: A \rightarrow B$ has

- domain A,
- codomain B,
- image (or range)

$$f(A) := \{f(x) : x \in A\}.$$

Note: the image is a subset of the codomain, $f(A) \subseteq B$.

Example

- 1. $f : \mathbb{R} \to \mathbb{R}, x \mapsto x^2$, has domain and codomain \mathbb{R} , image \mathbb{R}_0^+ . [Every nonnegative number y can be written as a square, $y = f(\sqrt{y}) \in f(\mathbb{R})$.]
- 2. $g: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, (x, y) \mapsto 2^{x}3^{y}$, has domain $\mathbb{N} \times \mathbb{N}$, codomain \mathbb{N} , image $g(\mathbb{N} \times \mathbb{N}) = \{2^{x}3^{y} : x, y \in \mathbb{N}\}.$

Images and preimages

Let $f : A \rightarrow B$. 1. For $X \subseteq A$, the **image of** X is

$$f(X) := \{f(x) : x \in X\}.$$

2. For $Y \subseteq B$, the **preimage of** Y is the set of all elements that f maps into Y,

$$f^{-1}(Y) := \{x \in A : f(x) \in Y\}.$$

Example

 $f: \mathbb{R} \to \mathbb{R}, \ x \mapsto x^2$ $f(\{0, 1, 2\}) = \{0, 1, 4\} \qquad f([2, 5]) = [4, 25]$ $f^{-1}(\{0, 1, 4\}) = \{-2, -1, 0, 1, 2\} \qquad f([9, 36]) = [-6, 3] \cup [3, 6]$

Injective functions

Definition $f: A \rightarrow B$ is **injective** (one-to-one) if

$$\forall x, y \in A \colon f(x) = f(y) \Rightarrow x = y.$$

► Equivalently, ∀x, y ∈ A: x ≠ y ⇒ f(x) ≠ f(y) (distinct elements are mapped to distinct elements)

Pictorially f is not injective if

Example

 $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$, is not injective since f(2) = f(-2).

Surjective functions

Definition

 $f: A \to B$ is surjective (onto B) if $\forall y \in B \exists x \in A: f(x) = y$.

• Equivalently f(A) = B image of f is equal to its codomain

Pictorially f is not surjective if

Example

f: ℝ → ℝ, x ↦ x², is not surjective since -2 ∈ f(ℝ).
g: ℝ → ℝ⁺₀, x ↦ x², is surjective since g(ℝ) = ℝ⁺₀.

 $f: A \to B$ becomes surjective by restricting its codomain to f(A).

Injective and surjective = bijective

 $f: A \to B$ is

- 1. injective if $\forall x, y \in A$: $f(x) = f(y) \Rightarrow x = y$,
- 2. surjective if $\forall y \in B \exists x \in A \colon f(x) = y$,
- 3. bijective if injective and surjective.

Example

- $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}, x \mapsto \frac{1}{x}$
 - 1. injective: Let $x, y \in \mathbb{R} \setminus \{0\}$ such that $\frac{1}{x} = \frac{1}{y}$. Multiplying by xy yields y = x.
 - 2. not surjective: $0 \notin f(\mathbb{R} \setminus \{0\})$ since $\frac{1}{x} \neq 0$ for any $x \in \mathbb{R} \setminus \{0\}$. In fact $f(\mathbb{R} \setminus \{0\}) = \mathbb{R} \setminus \{0\}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

3. not bijective since not surjective

The restriction $g : \mathbb{R} \setminus \{0\} \to \mathbb{R} \setminus \{0\}, x \mapsto \frac{1}{x}$, is bijective

Example

$$f: \mathbb{R}^2 \to \mathbb{R}^2, \ (x, y) \mapsto (x + y, x - y)$$

1. injective: Let $(x, y), (u, v) \in \mathbb{R}^2$ s.t. $f(x, y) = f(u, v)$, i.e.
$$x + y = u + v$$
$$x - y = u - v$$

Adding/subtracting these equations yields

$$2x = 2y$$
$$2y = 2v$$

Hence (x, y) = (u, v) and f is injective.

2. surjective: Let $(u, v) \in \mathbb{R}^2$. Find (x, y) s.t. f(x, y) = (u, v). Solve x + y = u

$$\begin{array}{rcl} x - y &= v \\ \hline 2x &= u + v \\ 2y &= u - v \end{array}$$

Then $x = \frac{u+v}{2}$, $y = \frac{u-v}{2}$ yield f(x, y) = (u, v). So f is surjective.

3. *f* is bijective since injective and surjective.