FUNCTIONS

PETER MAYR (MATH 2001, CU BOULDER)

1. Basic properties

Definition. Let A, B be sets. A function f from A to B is a relation such that

$$
\forall x \in A \exists!y \in B:(x, y) \in f,
$$

(for every $x \in A$ there exists exactly one $y \in B$ such that $(x, y) \in f$). Then we usually write $f(x)=y$ and $f: A \rightarrow B, x \mapsto f(x)$.
A is the domain, B is the codomain, and

$$
f(A):=\{f(x): x \in A\}
$$

is the range (or image) of f.
Definition. A function $f: A \rightarrow B$ is
(1) injective (one-to-one) if $\forall x, y \in A: f(x)=f(y) \Rightarrow x=y$
(2) surjective (onto) if $\forall y \in B \exists x \in A: f(x)=y$
(3) bijective if injective and surjective.

Remark. Equivalently $f: A \rightarrow B$ is
(1) injective if $\forall x, y \in A: x \neq y \Rightarrow f(x) \neq f(y)$ (contraposition),
(2) surjective if $f(A)=B$.

2. Pigeonhole principle

For functions on finite sets, injectivity and surjectivity pose strong conditions on the sizes of domain and codomain.

Lemma 1. Let A, B finite with $|A|=\mid B$ and let $f: A \rightarrow B$. TFAE:
(1) f is injective.
(2) f is surjective.
(3) f is bijective.

Lemma 2. Let A, B finite and let $f: A \rightarrow B$.
(1) If $|A|>|B|$, then f is not injective.
(2) If $|A|<|B|$, then f is not surjective.

Date: April 27, 2018.

3. Composition

Definition. Let $f: A \rightarrow B, g: B \rightarrow C$. The composition of f with g is

$$
g \circ f: A \rightarrow C, x \mapsto g(f(x)) .
$$

Composition of functions is not commutative but associative.
Theorem 3. The composition of injective functions is injective.
The composition of surjective functions is surjective.

4. Inverse functions

Definition. The inverse relation of $R \subseteq A \times B$ is

$$
R^{-1}:=\{(b, a):(a, b) \in R\} .
$$

R^{-1} is a relation from B to A but usually not a function (even if R is a function).
Theorem 4. A function $f: A \rightarrow B$ is bijective iff the inverse relation f^{-1} is a function from B to A.
Definition. Let $f: A \rightarrow B$ be bijective. Then $f^{-1}: B \rightarrow A$ is the inverse function of f.

Let $\operatorname{id}_{A}: A \rightarrow A, x \mapsto x$, denote the identity map on A.
Lemma 5. Let $f: A \rightarrow B$ be bijective. Then $f^{-1} \circ f=\operatorname{id}_{A}$ and $f \circ f^{-1}=\operatorname{id}_{B}$.

If there exist functions l, r that act like the inverse when composed with f on either side, then they are f^{-1}. Hence instead of checking that f is bijective, it suffices to find f^{-1} (and check that $f^{-1} \circ f=\mathrm{id}_{A}$, $f \circ f^{-1}=\operatorname{id}_{B}$).

Lemma 6. Let $f: A \rightarrow B$, and $l, r: B \rightarrow A$ such that $l \circ f=\mathrm{id}_{A}$ and $f \circ r=\operatorname{id}_{B}$. Then f is bijective and $l=r=f^{-1}$.

5. Image and preimage

Definition. Let $f: A \rightarrow B$.
(1) For $X \subseteq A$, the image of X is $f(X):=\{f(x): x \in X\}$.
(2) For $Y \subseteq B$, the preimage of Y is $f^{-1}(Y):=\{x \in A: f(x) \in$ $Y\}$.

Note that f is not necessarily bijective and f^{-1} is not necessarily a function. $f^{-1}(Y)$ denotes the set of all elements that f maps into Y.

