Equivalence relations

Peter Mayr

CU, Discrete Math, April 3, 2020

Recall

Definition

A relation $R \subseteq A \times A$ is an equivalence on A if R is

1. reflexive,
2. symmetric,
3. transitive.

$$
\begin{array}{r}
\forall x \in A: x R x \\
\forall x, y \in A: x R y \Rightarrow y R x \\
\forall x, y, z \in A:(x R y \wedge y R z) \Rightarrow x R z
\end{array}
$$

Note

1. Equivalence relations are used for classifying 'similar' elements of A.
2. They are often denoted by symbols like $\sim, \approx, \equiv, \cong \ldots$
3. Examples are $=, \equiv_{n}$ on $\mathbb{Z}(n \in \mathbb{N})$, having the same absolute value on \mathbb{R}, having the same cardinality on sets, the relation of all pairs on A, belonging to the same family, looking the same, ...

Class of $a=$ everything related to a

Definition

For an equivalence relation \sim on A and $a \in A$,

$$
[a]_{\sim}:=\{x \in A: x \sim a\} \quad \text { (set of all elements equivalent to a) }
$$

is the equivalence class of a with respect to \sim.
Example
Every $x \in \mathbb{Z}$ is either $\equiv_{2} 0$ or $\equiv_{2} 1$.

$$
\begin{array}{ll}
{[0]=\{2 z: z \in \mathbb{Z}\}} & =[2]=[-2]=[4]=\ldots \\
{[1]=\{2 z+1: z \in \mathbb{Z}\}} & =[-1]=[3]=\ldots
\end{array}
$$

Note

$$
\begin{array}{ll}
{[0] \cup[1]=\mathbb{Z}} & \text { (each element is in some class) } \\
{[0] \cap[1]=\emptyset} & \text { (no element is in } 2 \text { distinct classes) } \\
& \text { each element is in exactly one class }
\end{array}
$$

Equivalence classes

Theorem (Partition into classes)
Let \sim be an equivalence on A, let $a, b \in A$. Then

1. $[a]=[b]$ iff $a \sim b$;
2. $[a] \cap[b]=\emptyset$ iff $a \nsim b$;
3. $\bigcup_{a \in A}[a]=A$.

The set A is partitioned into disjoint equivalence classes:

Proof 1.
\Rightarrow : Assume $[a]=[b]$. Show $a \sim b$.

- Note $a \in[a]$ by the reflexivity of \sim.
- So $a \in[b]=\{x \in A: x \sim b\}$ and $a \sim b$

Proof 1.
\Leftarrow : Assume $a \sim b$. Show $[a]=[b]$.
To show $[a] \subseteq[b]$, let $c \in[a]$.

- Then $c \sim a$ and $a \sim b$ yield $c \sim b$ since \sim is transitive.
- So $c \in[b]$.

To show $[b] \subseteq[a]$, let $c \in[b]$.

- Then $c \sim b$ and $b \sim a$ since \sim is symmetric.
- Transitivity implies $c \sim a$.
- So $c \in[a]$.

Thus $[a]=[b]$.

Proof 2.
Show $[a] \cap[b]=\emptyset$ iff $a \nsim b$.
HW

Proof 3.
Show $\bigcup_{a \in A}[a]=A$.

- $\bigcup_{a \in A}[a] \subseteq A$ holds since $[a] \subseteq A$ for all $a \in A$.
- To show $A \subseteq \bigcup_{a \in A}$ [a], let $x \in A$. Since $x \in[x]$ by reflexitivity, $x \in \bigcup_{a \in A}[a]$.

Partitions

Definition

A partition of a set A is a set of non-empty subsets $\left\{A_{i}: i \in I\right\}$ such that

1. $A_{i} \cap A_{j}=\emptyset$ for all distinct $i, j \in I$,
2. $\bigcup_{i \in I} A_{i}=A$.

Each element of A is in exactly one subset A_{i}.

Any equivalence on A gives a partition of A and conversely

Corollary

Let \sim be an equivalence on A. Then the set of equivalence classes $\{[a]: a \in A\}$ is a partition of A.

Proof.
The defining conditions of a partition follow immediately from the previous Theorem.

Theorem
Let $\left\{A_{i}: i \in I\right\}$ a partition of A. For $a, b \in A$ define

$$
a \sim b \text { if } a, b \in A_{i} \text { for some } i \in I .
$$

Then \sim is an equivalence relation on A with classes $\left\{A_{i}: i \in I\right\}$.
Proof.
HW

