Cardinality of sets

Peter Mayr

CU, Discrete Math, November 30, 2020

When do two sets have the same size?

Recall

For finite sets A, B there exists a bijection $f: A \rightarrow B$ iff $|A|=|B|$.
This motivates the following general definition.
Definition
Sets A and B have the same cardinality, written $|A|=|B|$, if there exists a bijection $f: A \rightarrow B$.

Hilbert's Hotel

Imagine a hotel with infinitely many rooms numbered $1,2,3, \ldots$ All rooms are occupied. How to find space for a new guest? Tell each old occupant to move one room down (from 1 to 2, from 2 to $3, \ldots$).
Then room 1 becomes free and all old guests still have a room.
$f: \mathbb{N} \rightarrow \mathbb{N} \backslash\{1\}, x \mapsto x+1$, is bijective.
Hence $|\mathbb{N}|=|\mathbb{N} \backslash\{1\}|$.

What does it mean to count? Finding a bijection with $\{1, \ldots, n\}$!

Example

There is a bijection $f:\{a, b, c\} \rightarrow\{1,2,3\}$,
$f: \quad a \mapsto 1$
$b \mapsto 2$
$c \mapsto 3$

Definition

A set A is finite if there exists $n \in \mathbb{N}_{0}$ such that $|A|=|\{1, \ldots, n\}|$; otherwise A is infinite.

Note
Unlike a finite set, an infinite set can have a proper subset with the same cardinality (like $\mathbb{N} \backslash\{1\} \subsetneq \mathbb{N}$).

$\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R} \ldots$ are all infinite

Theorem
$|\mathbb{N}|=|\mathbb{Z}|$.
Proof.
For a bijection f between \mathbb{Z} and \mathbb{N}, send negative to even and non-negative to odd numbers:

$$
\begin{aligned}
& f: \mathbb{Z} \rightarrow \mathbb{N}, x \mapsto \begin{cases}-2 x & \text { if } x<0 \\
2 x+1 & \text { if } x \geq 0\end{cases} \\
& \begin{array}{ccrrrrrrrc}
x & \ldots & -3 & -2 & -1 & 0 & 1 & 2 & 3 & \ldots \\
\hline f(x) & \ldots & 6 & 4 & 2 & 1 & 3 & 5 & 7 & \ldots
\end{array}
\end{aligned}
$$

Claim: f is injective.

- Let $x, y \in \mathbb{Z}$ such that $f(x)=f(y)$.
- Case $f(x)$ is even: Then $f(x)=-2 x=-2 y$ yields $x=y$.
- Case $f(x)$ is odd: Then $f(x)=2 x+1=2 y+1$ yields $x=y$.

Recall the definition

$$
f: \mathbb{Z} \rightarrow \mathbb{N}, x \mapsto \begin{cases}-2 x & \text { if } x<0 \\ 2 x+1 & \text { if } x \geq 0\end{cases}
$$

Claim: f is surjective.

- Let $y \in \mathbb{N}$.
- Case y is even: Then $y=f(x)$ for $x=-\frac{y}{2} \in \mathbb{Z}$.
- Case y is odd: Then $y=f(x)$ for $x=\frac{y-1}{2} \in \mathbb{Z}$.

Hence f is bijective and $|\mathbb{N}|=|\mathbb{Z}|$.
\mathbb{R} is as big as the open interval $(0,1)$
Theorem
$|\mathbb{R}|=|(0,1)|$
Proof.

- $f: \mathbb{R}^{+} \rightarrow(0,1), x \mapsto \frac{x}{x+1}$, is bijective.

This projects a point x on the positive x-axis to a point $f(x)$ between 0 and 1 on the y-axis:

$-g: \mathbb{R} \rightarrow \mathbb{R}^{+}, x \mapsto e^{x}$, is bijective.

- $f \circ g: \mathbb{R} \rightarrow(0,1)$ is bijective.

Theorem
$|[0,1]|=|(0,1)|$
Proof.
HW

There are more reals than integers

Theorem (Cantor 1891)
$|\mathbb{N}| \neq|\mathbb{R}|$

Proof (Cantor's diagonal argument).

Show that no function $f: \mathbb{N} \rightarrow \mathbb{R}$ can be surjective. Consider

n	$f(n)$
1	$* . a_{1} a_{2} a_{3} \ldots$
2	$* . b_{1} b_{2} b_{3} \ldots$
3	$* . c_{1} c_{2} c_{3} \ldots$

a_{i}, b_{i}, \ldots digits in decimal expansion
!
Let $z \in \mathbb{R}$ such that the n-th decimal place of z is distinct from the n-the decimal place of $f(n)$ for all $n \in \mathbb{N}$:

$$
z=0 . z_{1} z_{2} z_{2} \ldots \text { with } z_{1} \neq a_{1}, z_{2} \neq b_{2}, z_{3} \neq b_{3}, \ldots
$$

Then $z \neq f(n)$ for all $n \in \mathbb{N}$. Hence f is not surjective.

There are different sizes of infinite sets!

Definition

A set A is countably infinite if $|A|=|\mathbb{N}|$. The cardinality of \mathbb{N} is $\aleph_{0}:=|\mathbb{N}|$ ('aleph zero', from Hebrew alphabet).
A is uncountable if A is infinite and $|A| \neq|\mathbb{N}|$.

Note

Every infinite set A has a countably infinite subset,

$$
\begin{array}{cccccc}
1, & 2, & \ldots & n, & n+1, & \ldots \in \mathbb{N} \\
\downarrow & \downarrow & & \downarrow & \downarrow & \\
a_{1}, & a_{2}, & \ldots & a_{n}, & a_{n+1}, & \ldots \in A
\end{array}
$$

\aleph_{0} is the smallest size an infinite set can have (the first infinite cardinal).

Example
$\mathbb{N}, \mathbb{Z}, \mathbb{N} \times \mathbb{N}, \mathbb{Q} \ldots$ are countably infinite.
$\mathbb{R},[0,1], \mathbb{C}, P(\mathbb{N}) \ldots$ are uncountable.

Why countable?

Note
A is countably infinite iff its elements can be enumerated as $a_{1}, a_{2}, a_{3}, \ldots$
Such an enumeration is just a bijection $\mathbb{N} \rightarrow A, 1 \mapsto a_{1}$

$$
2 \mapsto a_{2}
$$

Example

1. The set of prime numbers p_{1}, p_{2}, \ldots can be enumerated, hence is countably infinite.
2. The elements of \mathbb{R} cannot be enumerated one after the other by Cantor's diagonal argument.

\mathbb{Q} is countable

Theorem
$|\mathbb{Q}|=\aleph_{0}$
Proof.
Enumerate \mathbb{Q}

Similarly $\mathbb{N} \times \mathbb{N}, \mathbb{Z}^{3}, \ldots$ can be enumerated.

The Continuum Hypothesis

Recall $|\mathbb{N}|<|\mathbb{R}|$

Continuum Hypothesis (CH)
There is no set whose cardinality is strictly between $|\mathbb{N}|$ and $|\mathbb{R}|$.

- CH was proposed by Cantor 1878.
- CH can neither be disproved (Gödel 1940) nor proved (Cohen 1963) within the generally accepted foundations of Math, Zermelo-Fraenkel Set Theory (ZF).
- CH is independent from ZF ; true or false depending on what additional axioms you accept to build your sets.
- Do you want to know more? Take a class like 'Math 4000 -Foundations of Math' this Spring.

