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When do two sets have the same size?

Recall
For finite sets A,B there exists a bijection f : A→ B iff |A| = |B|.
This motivates the following general definition.

Definition
Sets A and B have the same cardinality, written |A| = |B|, if
there exists a bijection f : A→ B.

Hilbert’s Hotel
Imagine a hotel with infinitely many rooms numbered 1, 2, 3, . . .
All rooms are occupied. How to find space for a new guest?
Tell each old occupant to move one room down (from 1 to 2, from
2 to 3, . . . ).
Then room 1 becomes free and all old guests still have a room.

f : N→ N \ {1}, x 7→ x + 1, is bijective.
Hence |N| = |N \ {1}|.



What does it mean to count? Finding a bijection with
{1, . . . , n}!

Example

There is a bijection f : {a, b, c} → {1, 2, 3},
f : a 7→ 1

b 7→ 2
c 7→ 3

Definition
A set A is finite if there exists n ∈ N0 such that |A| = |{1, . . . , n}|;
otherwise A is infinite.

Note
Unlike a finite set, an infinite set can have a proper subset with the
same cardinality (like N \ {1} ( N).



N,Z,Q,R. . . are all infinite

Theorem
|N| = |Z|.

Proof.
For a bijection f between Z and N, send negative to even and
non-negative to odd numbers:

f : Z→ N, x 7→

{
−2x if x < 0

2x + 1 if x ≥ 0

x . . . −3 −2 −1 0 1 2 3 . . .

f (x) . . . 6 4 2 1 3 5 7 . . .

Claim: f is injective.

I Let x , y ∈ Z such that f (x) = f (y).

I Case f (x) is even: Then f (x) = −2x = −2y yields x = y .

I Case f (x) is odd: Then f (x) = 2x + 1 = 2y + 1 yields x = y .



Recall the definition

f : Z→ N, x 7→

{
−2x if x < 0

2x + 1 if x ≥ 0

Claim: f is surjective.

I Let y ∈ N.

I Case y is even: Then y = f (x) for x = − y
2 ∈ Z.

I Case y is odd: Then y = f (x) for x = y−1
2 ∈ Z.

Hence f is bijective and |N| = |Z|.



R is as big as the open interval (0, 1)

Theorem
|R| = |(0, 1)|

Proof.
I f : R+ → (0, 1), x 7→ x

x+1 , is bijective.
This projects a point x on the positive x-axis to a point f (x)
between 0 and 1 on the y -axis:

I g : R→ R+, x 7→ ex , is bijective.

I f ◦ g : R→ (0, 1) is bijective.



Theorem
|[0, 1]| = |(0, 1)|

Proof.
HW



There are more reals than integers

Theorem (Cantor 1891)

|N| 6= |R|

Proof (Cantor’s diagonal argument).

Show that no function f : N→ R can be surjective. Consider
n f (n)

1 ∗.a1a2a3 . . .
2 ∗.b1b2b3 . . .
3 ∗.c1c2c3 . . .
...

ai , bi , . . . digits in decimal expansion

Let z ∈ R such that the n-th decimal place of z is distinct from
the n-the decimal place of f (n) for all n ∈ N:

z = 0.z1z2z2 . . . with z1 6= a1, z2 6= b2, z3 6= b3,. . .

Then z 6= f (n) for all n ∈ N. Hence f is not surjective.



There are different sizes of infinite sets!

Definition
A set A is countably infinite if |A| = |N|. The cardinality of N is
ℵ0 := |N| (‘aleph zero’, from Hebrew alphabet).
A is uncountable if A is infinite and |A| 6= |N|.

Note
Every infinite set A has a countably infinite subset,

1, 2, . . . n, n + 1, . . . ∈ N
↓ ↓ ↓ ↓
a1, a2, . . . an, an+1, . . . ∈ A

ℵ0 is the smallest size an infinite set can have (the first infinite
cardinal).

Example

N,Z,N× N,Q. . . are countably infinite.
R, [0, 1],C,P(N). . . are uncountable.



Why countable?

Note
A is countably infinite iff its elements can be enumerated as
a1, a2, a3, . . .
Such an enumeration is just a bijection N→ A, 1 7→ a1

2 7→ a2
...

Example

1. The set of prime numbers p1, p2, . . . can be enumerated,
hence is countably infinite.

2. The elements of R cannot be enumerated one after the other
by Cantor’s diagonal argument.



Q is countable

Theorem
|Q| = ℵ0

Proof.
Enumerate Q

Similarly N× N,Z3, . . . can be enumerated.



The Continuum Hypothesis

Recall |N| < |R|

Continuum Hypothesis (CH)

There is no set whose cardinality is strictly between |N| and |R|.

I CH was proposed by Cantor 1878.

I CH can neither be disproved (Gödel 1940) nor proved (Cohen
1963) within the generally accepted foundations of Math,
Zermelo-Fraenkel Set Theory (ZF).

I CH is independent from ZF; true or false depending on what
additional axioms you accept to build your sets.

I Do you want to know more? Take a class like ‘Math 4000
–Foundations of Math’ this Spring.


