Cardinality of sets

Peter Mayr

CU, Discrete Math, November 30, 2020

(ロ)、(型)、(E)、(E)、 E) の(()

When do two sets have the same size?

Recall

For finite sets A, B there exists a bijection $f: A \rightarrow B$ iff |A| = |B|.

This motivates the following general definition.

Definition

Sets A and B have the same **cardinality**, written |A| = |B|, if there exists a bijection $f : A \rightarrow B$.

Hilbert's Hotel

Imagine a hotel with infinitely many rooms numbered $1, 2, 3, \ldots$ All rooms are occupied. How to find space for a new guest? Tell each old occupant to move one room down (from 1 to 2, from 2 to 3, ...).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Then room 1 becomes free and all old guests still have a room.

 $f: \mathbb{N} \to \mathbb{N} \setminus \{1\}, x \mapsto x + 1$, is bijective. Hence $|\mathbb{N}| = |\mathbb{N} \setminus \{1\}|$. What does it mean to count? Finding a bijection with $\{1, \ldots, n\}!$

Example

There is a bijection $f: \{a, b, c\} \rightarrow \{1, 2, 3\},$ $f: a \mapsto 1$ $b \mapsto 2$ $c \mapsto 3$

Definition

A set A is **finite** if there exists $n \in \mathbb{N}_0$ such that $|A| = |\{1, ..., n\}|$; otherwise A is **infinite**.

Note

Unlike a finite set, an infinite set can have a proper subset with the same cardinality (like $\mathbb{N} \setminus \{1\} \subsetneq \mathbb{N}$).

$\mathbb{N},\mathbb{Z},\mathbb{Q},\mathbb{R}.$. . are all infinite

 $\begin{array}{l} \text{Theorem} \\ |\mathbb{N}| = |\mathbb{Z}|. \end{array}$

Proof.

For a bijection f between \mathbb{Z} and \mathbb{N} , send negative to even and non-negative to odd numbers:

$$f: \mathbb{Z} \to \mathbb{N}, \ x \mapsto egin{cases} -2x & ext{if } x < 0 \ 2x+1 & ext{if } x \ge 0 \end{cases}$$

Claim: f is injective.

Recall the definition

$$f: \mathbb{Z} \to \mathbb{N}, \ x \mapsto egin{cases} -2x & ext{if } x < 0 \ 2x + 1 & ext{if } x \ge 0 \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Claim: f is surjective.

Let y ∈ N.
Case y is even: Then y = f(x) for x = -^y/₂ ∈ Z.
Case y is odd: Then y = f(x) for x = ^{y-1}/₂ ∈ Z.
Hence f is bijective and |N| = |Z|.

 ${\mathbb R}$ is as big as the open interval (0,1)

Theorem $|\mathbb{R}| = |(0,1)|$

Proof.

f: ℝ⁺ → (0, 1), x → x/(x+1), is bijective.
 This projects a point x on the positive x-axis to a point f(x) between 0 and 1 on the y-axis:

(日)(周)(王)(王)

500

• $g: \mathbb{R} \to \mathbb{R}^+, x \mapsto e^x$, is bijective.

• $f \circ g \colon \mathbb{R} \to (0,1)$ is bijective.

Theorem |[0,1]| = |(0,1)|Proof. HW

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

There are more reals than integers

Theorem (Cantor 1891) $|\mathbb{N}| \neq |\mathbb{R}|$

Proof (Cantor's diagonal argument).

Show that no function $f: \mathbb{N} \to \mathbb{R}$ can be surjective. Consider $\begin{array}{c|c}n & f(n) \\\hline 1 & *.a_1a_2a_3... \\2 & *.b_1b_2b_3... \\3 & *.c_1c_2c_3... \\\vdots \\ \end{bmatrix}$ Let $z \in \mathbb{R}$ such that the *n*-th decimal place of *z* is distinct from the *n*-the decimal place of f(n) for all $n \in \mathbb{N}$:

$$z=0.z_1z_2z_2\ldots$$
 with $z_1
eq a_1$, $z_2
eq b_2$, $z_3
eq b_3$,...

Then $z \neq f(n)$ for all $n \in \mathbb{N}$. Hence f is not surjective.

There are different sizes of infinite sets!

Definition

A set A is **countably infinite** if $|A| = |\mathbb{N}|$. The cardinality of \mathbb{N} is $\aleph_0 := |\mathbb{N}|$ ('aleph zero', from Hebrew alphabet). A is **uncountable** if A is infinite and $|A| \neq |\mathbb{N}|$.

Note

Every infinite set A has a countably infinite subset,

 \aleph_0 is the smallest size an infinite set can have (the first infinite cardinal).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\label{eq:standard} \begin{split} & \mathsf{Example} \\ & \mathbb{N}, \mathbb{Z}, \mathbb{N} \times \mathbb{N}, \mathbb{Q}. \hdots \text{ are countably infinite.} \\ & \mathbb{R}, [0,1], \mathbb{C}, P(\mathbb{N}). \hdots \text{ are uncountable.} \end{split}$$

Why countable?

Note

A is countably infinite iff its elements can be enumerated as a_1, a_2, a_3, \ldots Such an enumeration is just a bijection $\mathbb{N} \to A$, $1 \mapsto a_1$ $2 \mapsto a_2$

Example

- 1. The set of prime numbers p_1, p_2, \ldots can be enumerated, hence is countably infinite.
- 2. The elements of \mathbb{R} cannot be enumerated one after the other by Cantor's diagonal argument.

- ロ ト - 4 回 ト - 4 □ - 4

${\mathbb Q}$ is countable

 $\begin{array}{l} \text{Theorem} \\ |\mathbb{Q}| = \aleph_0 \end{array}$

Proof. Enumerate Q

Similarly $\mathbb{N}\times\mathbb{N},\mathbb{Z}^3,\ldots\,$ can be enumerated.

<ロト <回ト < 回ト < 回ト

æ

The Continuum Hypothesis

Recall $|\mathbb{N}| < |\mathbb{R}|$

Continuum Hypothesis (CH)

There is no set whose cardinality is strictly between $|\mathbb{N}|$ and $|\mathbb{R}|$.

- CH was proposed by Cantor 1878.
- CH can neither be disproved (Gödel 1940) nor proved (Cohen 1963) within the generally accepted foundations of Math, Zermelo-Fraenkel Set Theory (ZF).
- CH is independent from ZF; true or false depending on what additional axioms you accept to build your sets.
- Do you want to know more? Take a class like 'Math 4000 –Foundations of Math' this Spring.