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In this section we aim to show the following:

Goal. Every natural number can be written uniquely as a product of
primes.

1. Divisibility

Definition. Let a, b ∈ Z. Then a|b (a divides c) if there exists q ∈ Z
such that b = aq (Then we also call a a divisor of c and c a multiple
of a).

Definition. p ∈ N is prime if p > 1, and 1 and p are the only divisors
of p. Otherwise p is composite.

Lemma 1. Let a, b, c ∈ Z. If a|b and a|c, then a|b + c.

Proof. Assume a|b and a|c. We want to show a|b + c.
By definition of divisibility, b, c are both multiples of a. That is, we

have m,n ∈ Z such that b = ma, c = na. Consider

b + c = ma + na = (m + n)a.

Since m+ n ∈ Z, we see that b+ c is a multiple of a. Thus a|b+ c. �

Definition. a ∈ Z is even if 2|a, i.e., a = 2n for some n ∈ Z.
a ∈ Z is odd if 2 6 |a, i.e., a = 2n + 1 for some n ∈ Z.

Lemma 2. Let a ∈ Z. If a is odd, then a2 is odd.

Proof. Assume a is odd. We want to show a2 is odd.
By definition, we have n ∈ Z such that a = 2n + 1. Consider

a2 = (2n + 1)2 = 4n2 + 4n + 1 = 2(2n2 + 2n) + 1.

Thus a2 is odd. �

The previous two Lemmas are conditional statements: “If P,
then Q.” We used what is called a direct proof to show them:

Assume P holds. Show that Q holds.
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2. The greatest common divisor

Definition. The greatest common divisor gcd(a, b) of integers a, b
is the largest integer d that divides both a and b.

The least common multiple lcm(a, b) of integers a, b is the smallest
positive integer m such that a|m and b|m.

Example.

gcd(18, 24) = 6 lcm(18, 24) = 72
gcd(10,−4) = 2 lcm(10,−4) = 20
gcd(5, 0) = 5 lcm(5, 0) not defined
gcd(0, 0) not defined

Fact. For a, b ∈ N,

gcd(a, b) · lcm(a, b) = ab

(to be proved later).

How to compute the gcd? Instead of factoring the numbers, the
following lemma allows us to reduce to smaller numbers.

Lemma 3. Let a, b, q ∈ Z. Then gcd(a, b) = gcd(a− qb, b).

Example. The Euclidean algorithm for computing the gcd is based
on Lemma 3. We explain it by an example:

gcd(30, 12) = gcd(30−2·12, 12) = gcd(12, 6) = gcd(12−2·6, 6) = gcd(0, 6) = 6

In each step we subtract a multiple of the smaller number from the
bigger until we get to 0. Then gcd(0, a) = a for a ∈ N.

3. The division algorithm

In the Euclidean algorithm for gcd(a, b) we want to subtract an as
large as possible multiple qb from a to get a number a−qb that is strictly
smaller than b. This is always possible because of the following:

Division Algorithm. For all a, b ∈ Z with b > 0, there exist uniquely
determined integers q, r (quotient, remainder) with 0 ≤ r < b such that

a = qb + r.

Example. For b = 5,

11 = 2 · b + 1

−11 = (−3)b + 4

Note that the remainder r is always non-negative.

Proof of the Division Algorithm. We have to show
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(1) q, r exist,
(2) q, r are unique.

Proof of (1).

Consider the set of all non-negative integers of the form a minus a
multiple of b,

A := {n ∈ N0 : n = a− qb for q ∈ Z}
For r we want to pick the smallest element in A. This exists by the
following property of the natural numbers that we take without proof.

Well-ordering of N0. Every non-empty subset of N0 has a least ele-
ment.

Let r ∈ N0 be the least element in A, let q ∈ Z with a− qb = r.

Claim. r < b

Proof by contradiction. Assume r ≥ b. Then r − b = r − (q + 1)b ∈ A
and r− b < r. This contradicts the assumption that r is smallest in A.
Hence our assumption that r ≥ b cannot be true. We have r < b. �

This completes the proof of (1). We omit the proof of (2). �

Here we used a proof by contradiction to show a statement P :

Assume ∼ P. Show this implies FALSE (a contradiction).

Then the assumption ∼ P must have been FALSE. Hence P is
TRUE.

4. Bezout’s identity

The Euclidean algorithm also allows us to write gcd(a, b) as a sum
of a multiple of a and a multiple of b. Again we explain how to do that
by an example.

Example. We compute gcd(147, 33) by repeatedly subtracting multi-
ples of the smaller number from the bigger. Additionally we record
how to write each number as a sum of multiples of 147 and 33.

147 =1 · 147 + 0 · 33

33 =0 · 147 + 1 · 33 subtract 4 times from the previous equation

15 =1 · 147− 4 · 33 subtract 2 times from the previous

3 =− 2 · 147 + 9 · 33 subtract 5 times from the previous

0

In the penultimate line we find gcd(147, 33) = 3 = −2 · 147 + 9 · 33.
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Bezout’s identity. Let a, b ∈ Z, not both 0. Then there exist u, v ∈ Z
such that

gcd(a, b) = u · a + v · b
u, v are called Bezout’s cofactors and can be computed by the Eu-
clidean algorithm.

Proof. Follows from the Euclidean algorithm. �

Euclid’s Lemma. Let p be prime, a, b ∈ Z. If p|ab, then p|a or p|b.

Proof. Exercise. �

5. Checking for primes

Lemma 4. Let a, b, c ∈ N. If ab = c, then a ≤
√
c or b ≤

√
c.

Contrapositive proof. Assume a >
√
c and b >

√
c. Show ab 6= c.

By assumption ab >
√
c ·
√
c = c. Hence ab 6= c. �

Above we showed the statement “If P, then Q” by proving its
contrapositive “If∼Q, then∼ P” (which is logically equivalent).
This is called a contrapositive proof:

Assume ∼ Q. Show ∼ P.

Corollary 5. If a ∈ Z is not prime, then it has a divisor d with
1 < d ≤

√
a.

6. Irrationality of
√

2

Lemma 6. Let a ∈ Z. Then a is even iff a2 is even.

Definition. x ∈ R is rational if x = a
b

for some a, b ∈ Z with b > 0;
otherwise x is irrational.

Theorem 7.
√

2 is irrational.

Proof by contradiction. Suppose
√

2 is rational.
Then we have a, b ∈ Z with gcd(a, b) = 1 such that

√
2 =

a

b

By squaring

2b2 = a2

Hence a2 is even. By Lemma 6 also a is even. So a = 2c for some
c ∈ Z. Then

2b2 = (2c)2 = 4c2
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yields b2 = 2c2. So b2 and consequently b is even by Lemma 6. c Now
2|a and 2|b contradict our assumption that gcd(a, b) = 1. Thus our
assumption was wrong, no such a, b exist, and

√
2 is not rational. �

7. Modular arithmetic

Definition. Let a, b ∈ Z, n ∈ N.

(1) a mod n is the remainder of a by division by n. So a mod n ∈
{0, . . . , n− 1}.

(2) a, b are congruent modulo n (written a ≡ b mod n or a ≡n b)
if n|a− b.

Note a ≡ b mod n iff a mod n = b mod n.

Lemma 8. Let a, b, c, d ∈ Z, n ∈ N with a ≡ b mod n and c ≡ d mod
n. Then

(1) a + c ≡ b + d mod n,
(2) a · c ≡ b · d mod n.

Proof. Exercise. �

7.1. An application in cryptography. When you login to your on-
line bank account from home, messages between you and your bank
are transmitted over the internet. To keep them safe (from your in-
ternet provider or anyone else), these messages are encrypted using a
personal key between you and your bank. But how can you and your
bank agree on such a secret key in the first place without sending it
over the internet where it may be stolen?

Problem. Alice and Bob want to agree on a secret number (a key)
over the internet where others might listen in on their conversation (an
unsecure channel). Afterwards this secret key can be used to encode
messages between Alice and Bob.

There are several ways to do this. The following is used in internet
traffic for example.

Algorithm (Diffie-Hellman key exchange).

(1) Alice and Bob agree on a prime p and a base g (public).
E.g. p = 31, g = 3

(2) Alice chooses a secret integer a > 0, sends x = ga mod p to
Bob.

E.g., a = 4,

x = 34 mod 31 = 92 mod 31 = 19
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Bob chooses a secret integer b > 0, sends y = gb mod p to
Alice.

E.g., b = 6,

y = 36 mod 31 = 34 · 32 mod 31 = 19 · 9 mod 31 = 16

(3) Having received y, Alice computes s = ya mod p.

s = 164 mod 31 = 2

Having received x, Bob computes s = xb mod p.

s = 196 mod 31 = 2

Remark.

(1) Note that Alice and Bob both compute the same number s
above since by Lemma 8

xb ≡ (ga)b ≡ gab ≡ gba ≡ (gb)a ≡ ya mod p.

(2) Only a, b, s are kept secret (never transmitted) whereas p, g, x, y
can be sent publicly.

(3) To compute s from p, g, x, y it seems that you need to know a
or b. Note that ga = x could easily be solved for a by taking
the logarithm of x with base g. However here we need to solve
ga ≡ x mod p for a. This is called the discrete logarithm
problem and for p large enough (in practice, p ∼ 21024) there
is no efficient way known to do this.

Hence the safety of the Diffie-Hellman key exchange (and of
most other modern cryptographic systems) depends on a Math
problem that cannot be solved efficiently.

8. Prime factorizations

First we generalize Euclid’s Lemma from 2 to an arbitrary number
of factors.

Lemma 9. Let n ∈ N, a1, . . . , an ∈ Z, p prime. If p|a1 · · · an, then p|ai
for at least one i ∈ {1, . . . , n}.

Proof by induction on n.
Basis step: For n = 1, p|a1 and the statement is true.
Induction hypothesis: For a fixed k ∈ N, if p|a1 · · · ak, then p|ai for

at least one i ∈ {1, . . . , k}.
Inductive step: Show that the statement is true for n = k + 1.

So assume p|a1 · · · ak+1. Writing a1 · · · ak+1 = (a1 · · · ak)ak+1 as the
product of 2 factors, Euclid’s Lemma yields that p|a1 · · · ak or p|ak+1.
In the first case the induction hypothesis yields p|ai for at least one
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i ∈ {1, . . . , k}. Thus p|a1 or p|a2 or . . . p|ak or p|ak+1. The induction
step is proved and so is the Lemma. �

Induction. To show that a statement Sn is true for every
n ∈ N:

(1) basis step: Show S1.
(2) inductive step: Show Sk ⇒ Sk+1 for any k ∈ N.

Fundamental Theorem of Arithmetic.

(1) Every integer n > 1 has a factorization into primes

n = p1p2 · · · pk.

(2) This prime factorization of n is unique up to ordering. That is,
if

n = p1p2 · · · pk = q1q2 · · · q`
for primes p1, . . . , pk, q1, . . . , q`, then k = ` and (p1, . . . , pk) is a
permutation of (q1, . . . , qk).

Proof of (1) by strong induction on n.
Basis step: n = 2 is a prime.
Induction assumption: Assume for a fixed n ∈ N that all numbers

≤ n can be written as a product of primes.
Inductive step: Show n + 1 can be written as a product of primes.

We distinguish two cases:
Case, n + 1 is prime: Then n + 1 has a prime factorization (just

itself).
Case, n+ 1 is not prime: Then n+ 1 = ab for some 1 < a, b < n+ 1.

Since a, b ≤ n, the induction assumption applies to them. Then we
have primes p1, . . . , pk, q1, . . . , q` such that a = p1 · · · pk, b = q1 · · · q`.
Now n+1 = p1 · · · pkq1 · · · q` is also a product of primes. The induction
step is proved and so is item (1) of the theorem.

Proof of (2) by minimal counterexample. Seeking a contradiction sup-
pose that the statement is wrong. Then there is some counter-example,
moreover since N is well-ordered, there must be a minimal counter-
example n (Note that n > 2 because 2 has exactly one prime factor-
ization). So let

n = p1p2 · · · pk = q1q2 · · · q`
for primes p1, . . . , pk and q1, . . . , q` that are not a permutation of each
other. Since p1|q1q2 · · · q`, we obtain that p1 divides some qi by the
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previous lemma. But since qi is prime, this means p1 = qi. So dividing
by p1 yields

n

p1
= p2 · · · pk = q1q2 · · · qi−1qi+1 · · · q`.

Now p2, . . . , pk and q1, . . . , qi−1, qi+1, . . . , q` are not permutations of each
other because otherwise p1, . . . , pk and q1, . . . , q` would have been per-
mutations of each other. That means n

p1
has two different prime factor-

izations and is a counter-example to statement (2) contradicting our
assumption that n was the smallest counter-example.

But if there cannot be a smallest counter-example, there cannot be
any counter-example at all, which means that (2) is true for all n ∈
N. �

Item (1) of the Fundamental Theorem was proved by

Strong Induction. To show that a statement Sn is true for
every n ∈ N:

(1) basis step: Show S1.
(2) inductive step: Show S1∧S2∧· · ·∧Sk ⇒ Sk+1 for any

k ∈ N.

Induction is called strong if you use the induction assumption that
all statements S1, . . . , Sk hold, not just Sk, in order to prove Sk+1.

Item (2) of the Fundamental Theorem was proved by a special version
of a proof by contradiction:

Proof by minimal counter-example. To show that a state-
ment Sn is true for every n ∈ N:
Suppose that k > 1 is smallest such that Sk is false. Show that
there exists some smaller ` < k still such that S` is false.

Lemma 10. Let p1 = 2, p2 = 3, p3, . . . be the list of all primes. Let
a =

∏
i∈N p

ei
i , b =

∏
i∈N p

fi
i with ei, fi ∈ N0 for all i ∈ N. Then

(1) gcd(a, b) =
∏

i∈N p
min(ei,fi)
i ,

(2) lcm(a, b) =
∏

i∈N p
max(ei,fi)
i ,

(3) gcd(a, b) · lcm(a, b) = ab.

Proof of (1). Let d =
∏

i∈N p
gi
i be a divisor of a and of b. Let i ∈ N

and gi ≥ 1. Then pgi cannot divide a
pei

by the Fundamental Theorem

of Arithmetic. So pgi |pei and gi ≤ ei. Similarly gi ≤ di. In any case
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gi ≤ min(ei, fi) (Note that this is also trivially true for gi = 0). Hence
for any common divisor d of a and b we have

d ≤
∏
i∈N

p
min(ei,fi)
i .

But clearly
∏

i∈N p
min(ei,fi)
i divides both a and b. Hence it is the gcd of

a and b.
Proof of (2),(3). Exercise �


