Math 2001 - Assignment 12

Due November 18, 2016

- (1) Give the addition and multiplication tables for \mathbb{Z}_6 .
- (2) Dividing in \mathbb{Z}_n means solving an equation $[a] \cdot [x] = [b]$ for [x]. Solve $[8] \cdot [x] = [1]$ in \mathbb{Z}_{37} .

Hint: Use the Euclidean algorithm to solve $8x \equiv 1 \mod 37$.

(3) Let p be a prime. Show that for every $[a] \in \mathbb{Z}_p$ with $[a] \neq [0]$ there exists $[x] \in \mathbb{Z}_p$ such that

$$[x] \cdot [a] = [1].$$

Is the same statement true if p is not prime?

- (4) Let $f = \{(x, 4x + 1) \mid x \in \mathbb{Z}\}$ be a function on \mathbb{Z} .
 - (a) Give domain, codomain, and range of f. What is f(9)?
 - (b) Is f one-to-one, onto, bijective?
- (5) Give examples for
 - (a) a function $f: \mathbb{Z} \to \mathbb{Z}$ that is not injective but surjective;
 - (b) a function $g: \{1, 2, 3\} \rightarrow \{1, 2\}$ that is neither injective nor surjective;
 - (c) a bijective function $h: \{1, 2, 3\} \rightarrow \{1, 2\}$.
- (6) Let A, B be finite sets. How many functions from A to B are there?

How many bijective functions from A to B?