Math 2001 - Assignment 11

Due November 11, 2016

- (1) Prove or disprove that the following relations are reflexive, symmetric, antisymmetric, transitive:
 - (a) < on \mathbb{Z}
 - (b) \neq on \mathbb{Z}
 - (c) \subseteq on the power set P(A) of a set A
- (2) Prove or disprove that the following relations are reflexive, symmetric, antisymmetric, transitive:
 - (a) \mid (divides) on \mathbb{N}
 - (b) $R = \{(x, y) \in \mathbb{R} : |x y| \le 1\}$
 - (c) $S = \{(1,2), (1,3), (2,2), (2,3), (3,2)\}$ on $\{1,2,3\}$
- (3) List the equivalence classes for these equivalence relations:
 (a) The relation "has the same size" on the power set of {1, 2, 3}
 (b) ≡_n on Z
 - $(b) \equiv_n 0 \square \square$
 - (c) $R = \{(x, y) \in \mathbb{Z} : |x| = |y|\}$ on \mathbb{Z}
- (4) How many different equivalence relations are there on $A = \{1, 2, 3\}$? Describe them all by listing their equivalence classes.
- (5) Given finite sets A and B. How many different relations are there from A to B?
- (6) Let \sim be an equivalence relation on a set A, let $a, b \in A$. Let [a] denote the equivalence class of a modulo \sim . Show that

$$a \not\sim b$$
 iff $[a] \cap [b] = \emptyset$.

References

 Richard Hammack. The Book of Proof. Creative Commons, 2nd edition, 2013. Available for free: http://www.people.vcu.edu/~rhammack/BookOfProof/