Math 2001 - Assignment 8

Due October 21, 2016

- (1) Read Section 5.3 in [1].
- (2) Complete the proof from class that gcd(a, b) = gcd(a qb, b)for all $a, b, q \in Z$ with not both a and b equal 0. Assume d|a - qb and d|b. Show that d|a and d|b.
- (3) Solve the following for $u, v \in \mathbb{Z}$: (a) 33u + 10v = -5 (b) 44u + 10v = 5
- (4) Let $a, b, c \in \mathbb{Z}$ with a, b not both 0. Show that

 $\exists u, v \in \mathbb{Z} \colon u \cdot a + v \cdot b = c \text{ iff } \gcd(a, b) | c.$

Hint: There are 2 implications to show:

(a) If $u \cdot a + v \cdot b = c$, then gcd(a, b)|c.

- (b) If gcd(a, b)|c, then there are $u, v \in \mathbb{Z}$ such that $u \cdot a + v \cdot b = c$.
- (5) Two integers have the same parity if both are even or both are odd. Otherwise they have opposite parity.
 Let a, b ∈ Z. Show that if a + b is even, then a, b have the same parity.

Hint: Use a contrapositive proof.

- (6) Complete the following proof of **Euclid's Lemma:** Let p be a prime, $a, b \in \mathbb{Z}$. If p|ab, then p|a or p|b.
 - *Proof:* Assume _____ but $p \not\mid a$. We will show p|b. By Bezout's identity we have $u, v \in \mathbb{Z}$ such that

 $= \gcd(a, b).$

Since p is _____ and $p \not\mid a$, we have gcd(a, p) =____. Hence

 $ua + vp = ____.$

Multiplying this equation by _____ yields

_____ = b

Since p|_____ and p|_____, we have a multiple of p on the left hand side of this equation. Thus _____.

Please hand in this sheet of paper with your solution of 6.

[1] Richard Hammack. The Book of Proof. Creative Commons, 2nd edition, 2013.