Math 2001 - Assignment 13

Due December 4, 2015

- (1) Let A, B be finite sets. How many functions from A to B are there? How many bijective functions from A to B?
- (2) (a) Read the proof of Theorem 12.2 in [1].
 - (b) Find an example of functions $f: A \to B, g: B \to C$ where g is not injective but $g \circ f$ is injective.
- (3) Let $f: A \to B, g: B \to C$. Show that if $g \circ f$ is injective, then f is injective.

(Hint: use contraposition)

(4) Show that

$$f: \mathbb{R} - \{1\} \to \mathbb{R} - \{2\}, \ x \mapsto \frac{2x+1}{x-1}$$

is bijective.

Recall that $\mathbb{R} - \{1\}$ is the set of all real numbers except 1.

- (5) Determine f^{-1} for f from the previous exercise.
- (6) Let c be the function on the power set of \mathbb{Z} that maps every set to its complement, i.e.,

$$c\colon P(\mathbb{Z})\to P(\mathbb{Z}), X\to \bar{X}.$$

Determine c^{-1} .

References

 Richard Hammack. The Book of Proof. Creative Commons, 2nd edition, 2013. Available for free: http://www.people.vcu.edu/~rhammack/BookOfProof/