Math 2001 - Assignment 10

Due November 6, 2015

(1) Prove for all $a, b \in \mathbb{Z}$:

 $a \equiv b \mod 6 \text{ iff } a \equiv b \mod 2 \text{ and } a \equiv b \mod 3$

Hint: You have to consider implications in both directions.

- (2) Prove for all $a, b, c \in \mathbb{Z}$: If $a \not\mid bc$, then $a \not\mid b$ and $a \not\mid c$.
- (3) Prove for all $x, y \in \mathbb{R}$:
 - If x is rational and xy is irrational, then y is irrational.
- (4) Prove by induction that for every $q \in \mathbb{R}$ with $q \neq 1$ and for every $n \in \mathbb{N}_0$:

$$1 + q^{1} + q^{2} + \dots + q^{n} = \frac{1 - q^{n+1}}{1 - q}$$

(5) Show that for every natural number $n \ge 4$:

$$2^n \ge n^2$$

(6) [1, Chapter 10, exercise 8] Show that for every $n \in \mathbb{N}$:

$$\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{n}{(n+1)!} = 1 - \frac{1}{(n+1)!}$$

References

 Richard Hammack. The Book of Proof. Creative Commons, 2nd edition, 2013. Available for free: http://www.people.vcu.edu/~rhammack/BookOfProof/