Math 2001 - Assignment 8

Due October 23, 2015

(1) Read Section 5.3 in [1].
(2) Solve the following for $u, v \in \mathbb{Z}$: (a) $33u + 10v = -5$ (b) $44u + 10v = 5$
(a) $33a + 10b = -3$ (b) $44a + 10b = 3$ (c) Let $a, b, c \in \mathbb{Z}$ with a, b not both 0. Show that
$\exists u, v \in \mathbb{Z} \colon u \cdot a + v \cdot b = c \text{ iff } \gcd(a, b) c.$
 Hint: There are 2 implications to show: (a) If u · a + v · b = c, then gcd(a, b) c. (b) If gcd(a, b) c, then there are u, v ∈ Z such that u·a+v·b = c. (4) Two integers have the same parity if both are even or both are odd. Otherwise they have opposite parity. Let a, b ∈ Z. Show that if a + b is even, then a, b have the same parity.
Hint: Use a contrapositive proof.
(5) A natural number is $composite$ if it is not prime. Show that for $n \in \mathbb{N}, n > 1$, every number in the sequence $n! + 2, n! + 3, \ldots, n! + n$ is composite. Hence one can produce arbitrary long intervals of natural
numbers that contain no prime.
(6) Complete the following proof of Euclid's Lemma: Let p be a prime, $a, b \in \mathbb{Z}$. If $p ab$, then $p a$ or $p b$. Proof: Assume but $p \not\mid a$. We will show $p b$. By Bezout's identity we have $u, v \in \mathbb{Z}$ such that
$=\gcd(a,b).$
Since p is and $p \not\mid a$, we have $\gcd(a,p) =$ Hence
$ua + vp = \underline{\hspace{1cm}}$.
Multiplying this equation by yields
$\underline{\hspace{1cm}}=b$
Since $p $ and $p $, we have a multiple of p on the left hand side of this equation. Thus
Please hand in this sheet of paper with your solution of 6.
[1] Richard Hammack. The Book of Proof. Creative Commons, 2nd

edition, 2013.