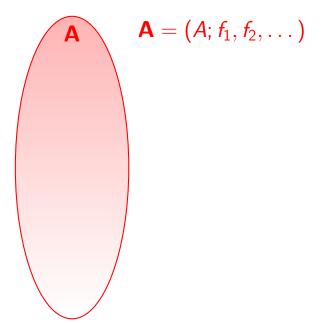
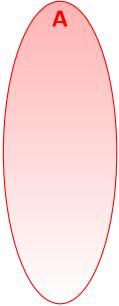
Four (five) types of subuniverses and the complexity of the constraint satisfaction problem

Dmitriy Zhuk

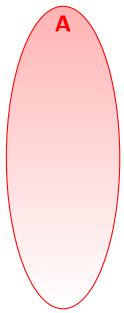
Lomonosov Moscow State University

Joint Mathematics Meetings AMS Special Session on Algebras and Algorithms

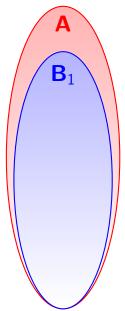




$\mathbf{A} = (A; f_1, f_2, \dots)$ |A| < \infty, idempotent: $f_i(x, x, \dots, x) = x$

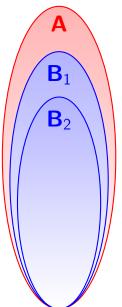


$\mathbf{A} = (A; f_1, f_2, \dots)$ |A| < ∞ , idempotent: $f_i(x, x, \dots, x) = x$ having Property P



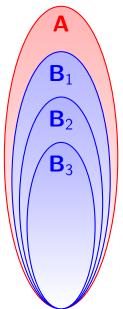
 $A \ge B_1$

Choose a subalgebra B_1 with Property P



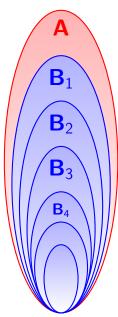
 $\mathbf{A} \geq \mathbf{B}_1 \geq \mathbf{B}_2$

Choose a subalgebra B_1 with Property *P* Choose a subalgebra B_2 with Property *P*



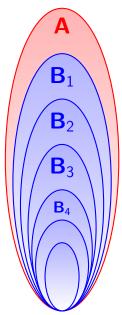
 $\mathbf{A} \geq \mathbf{B}_1 \geq \mathbf{B}_2 \geq \mathbf{B}_3$

Choose a subalgebra B_1 with Property PChoose a subalgebra B_2 with Property PChoose a subalgebra B_3 with Property P



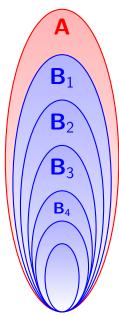
 $\mathbf{A} \geq \mathbf{B}_1 \geq \mathbf{B}_2 \geq \mathbf{B}_3 \geq \dots$

Choose a subalgebra B_1 with Property PChoose a subalgebra B_2 with Property PChoose a subalgebra B_3 with Property PChoose a subalgebra B_4 with Property P



 $\mathbf{A} \geq \mathbf{B}_1 \geq \mathbf{B}_2 \geq \mathbf{B}_3 \geq \dots$

Ideas:

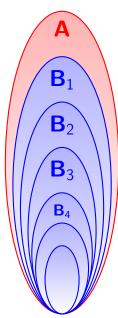


 $\mathbf{A} = (A; f_1, f_2, \dots)$ |A| < ∞ , idempotent: $f_i(x, x, \dots, x) = x$ having Property P

 $\mathbf{A} \geq \mathbf{B}_1 \geq \mathbf{B}_2 \geq \mathbf{B}_3 \geq \dots$

Ideas:

1. Choose strong subalgebras preserving property *P*



 $\mathbf{A} \geq \mathbf{B}_1 \geq \mathbf{B}_2 \geq \mathbf{B}_3 \geq \dots$

Ideas:

1. Choose strong subalgebras preserving property P

2. When \mathbf{B}_i is small enough derive a contradiction or required fact.

Claim 1 [M. Maróti and R. Mckenzie, 2008] Every finite idempotent algebra **A**

1. has a WNU* term operation, or

* $w(y,x,\ldots,x) = w(x,y,x,\ldots,x) = \cdots = w(x,\ldots,x,y)$

2. has essentially unary $\mathbf{C} \in HSP(\mathbf{A})$.

Claim 1 [M. Maróti and R. Mckenzie, 2008] Every finite idempotent algebra **A**

1. has a WNU* term operation, or

* $w(y,x,\ldots,x) = w(x,y,x,\ldots,x) = \cdots = w(x,\ldots,x,y)$

2. has essentially unary $\mathbf{C} \in HSP(\mathbf{A})$.

Claim 2 [M. Kozik, A. Krokhin, M. Valeriote, R. Willard, 2015] Every finite idempotent algebra **A** with bounded width has a WNU term operation of every arity greater than two.

Claim 1 [M. Maróti and R. Mckenzie, 2008] Every finite idempotent algebra **A**

1. has a WNU* term operation, or

* $w(y,x,\ldots,x) = w(x,y,x,\ldots,x) = \cdots = w(x,\ldots,x,y)$

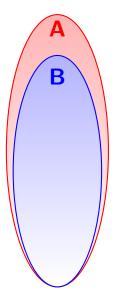
2. has essentially unary $\mathbf{C} \in HSP(\mathbf{A})$.

Claim 2 [M. Kozik, A. Krokhin, M. Valeriote, R. Willard, 2015] Every finite idempotent algebra **A** with bounded width has a WNU term operation of every arity greater than two.

Claim 3 [M. Kozik. 2016]

Every cycle-consistent ((2,3)-consistent) CSP instance \mathcal{I} over a constraint language with bounded width has a solution.

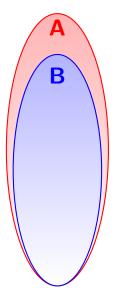
Absorbing subuniverse



 ${\cal B}$ is an absorbing subuniverse if there exists a term operation such that

$$t(B,\ldots,B,A,B,\ldots,B)\subseteq B.$$

Absorbing subuniverse

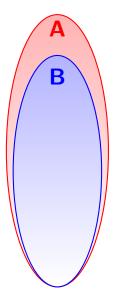


 ${\cal B}$ is an absorbing subuniverse if there exists a term operation such that

$$t(B,\ldots,B,A,B,\ldots,B)\subseteq B.$$

If t is binary then B is a binary absorbing subuniverse

Absorbing subuniverse



 ${\cal B}$ is an absorbing subuniverse if there exists a term operation such that

 $t(B,\ldots,B,A,B,\ldots,B)\subseteq B.$

If t is binary then B is a binary absorbing subuniverse

Examples

- 1. {1} is s binary absorbing subuniverse in $(\{0,1\}, \lor)$.
- {2, 3} is a binary absorbing subuniverse in ({0, 1, 2, 3}, max).
- 3. $\{2\}$ is an absorbing subuniverse in $(\{0, 1, 2, 3\}, majority)$.

Theorem Every finite idempotent algebra **A** has

Theorem Every finite idempotent algebra **A** has

1. a binary absorbing subuniverse B, or

Theorem

Every finite idempotent algebra A has

- 1. a binary absorbing subuniverse B, or
- 2. a center *B*, i.e. an absorbing subuniverse s.t. $\forall a \in A \setminus B: (a, a) \notin Sg_{A^2}((\{a\} \times B) \cup (B \times \{a\}))$

Theorem

Every finite idempotent algebra A has

- 1. a binary absorbing subuniverse B, or
- 2. a center *B*, i.e. an absorbing subuniverse s.t. $\forall a \in A \setminus B: (a, a) \notin Sg_{A^2}((\{a\} \times B) \cup (B \times \{a\}))$
- 3. a linear subuniverse *B*, i.e a block of a congruence σ s.t. A/σ is an affine square-free algebra, i.e.
 - there exists $(A/\sigma; \oplus) \cong (\mathbb{Z}_{p_1} \times \cdots \times \mathbb{Z}_{p_s}; +)$

$$(x_1 \oplus x_2 = x_3 \oplus x_4) \in \mathsf{Inv}(\mathbf{A}/\sigma)$$

$$x_1 \oplus \cdots \oplus x_k \in \mathsf{Clo}(\mathbf{A}/\sigma)$$

Theorem

Every finite idempotent algebra A has

- 1. a binary absorbing subuniverse B, or
- 2. a center *B*, i.e. an absorbing subuniverse s.t. $\forall a \in A \setminus B: (a, a) \notin Sg_{A^2}((\{a\} \times B) \cup (B \times \{a\}))$
- 3. a linear subuniverse *B*, i.e a block of a congruence σ s.t. A/σ is an affine square-free algebra, i.e.
 - there exists $(A/\sigma; \oplus) \cong (\mathbb{Z}_{p_1} \times \cdots \times \mathbb{Z}_{p_s}; +)$

$$\blacktriangleright (x_1 \oplus x_2 = x_3 \oplus x_4) \in \mathsf{Inv}(\mathbf{A}/\sigma)$$

 $x_1 \oplus \cdots \oplus x_k \in \mathsf{Clo}(\mathbf{A}/\sigma)$

 a PC subuniverse B, i.e. a block of a congruence σ s.t.
 A/σ ≅ A₁ × ··· × A_s, where each A_i is a Polynomially Complete (PC) algebra without binary absorption or center.

Theorem

Every finite idempotent algebra A has

- 1. a binary absorbing subuniverse B, or
- 2. a center *B*, i.e. an absorbing subuniverse s.t. $\forall a \in A \setminus B: (a, a) \notin Sg_{A^2}((\{a\} \times B) \cup (B \times \{a\}))$
- 3. a linear subuniverse *B*, i.e a block of a congruence σ s.t. A/σ is an affine square-free algebra, i.e.
 - there exists $(A/\sigma; \oplus) \cong (\mathbb{Z}_{p_1} \times \cdots \times \mathbb{Z}_{p_s}; +)$

$$\blacktriangleright (x_1 \oplus x_2 = x_3 \oplus x_4) \in \mathsf{Inv}(\mathbf{A}/\sigma)$$

 $x_1 \oplus \cdots \oplus x_k \in \mathsf{Clo}(\mathbf{A}/\sigma)$

- 4. a PC subuniverse *B*, i.e. a block of a congruence σ s.t. $\mathbf{A}/\sigma \cong \mathbf{A}_1 \times \cdots \times \mathbf{A}_s$, where each \mathbf{A}_i is a Polynomially Complete (PC) algebra without binary absorption or center.
- 5. a CBT (Cube Term Blocker) subuniverse *B*, i.e. $A^n \setminus (A \setminus B)^n \in Inv(\mathbf{A})$ for every *n*.

We write $\mathbf{B} \leq_{\mathcal{T}} \mathbf{A}$ if *B* is a subuniverse of \mathbf{A} of type \mathcal{T} (Here $\mathcal{T} \in \{BA(t), C, L, PC\}$)

We write $\mathbf{B} \leq_{\mathcal{T}} \mathbf{A}$ if *B* is a subuniverse of **A** of type \mathcal{T} (Here $\mathcal{T} \in \{BA(t), C, L, PC\}$)

Theorem

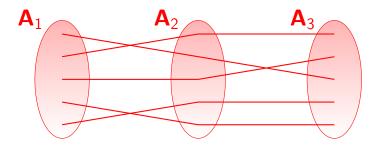
Suppose $R \leq_{sd} \mathbf{A}_1 \times \cdots \times \mathbf{A}_s$, $\mathbf{B}_i \leq_{\mathcal{T}} \mathbf{A}_i$ for every *i*. Then

1. $R \cap (B_1 \times \cdots \times B_n) \leq_{\mathcal{T}} R$

We write $\mathbf{B} \leq_{\mathcal{T}} \mathbf{A}$ if *B* is a subuniverse of **A** of type \mathcal{T} (Here $\mathcal{T} \in \{BA(t), C, L, PC\}$)

Theorem

Suppose $R \leq_{sd} \mathbf{A}_1 \times \cdots \times \mathbf{A}_s$, $\mathbf{B}_i \leq_{\mathcal{T}} \mathbf{A}_i$ for every *i*. Then 1. $R \cap (B_1 \times \cdots \times B_n) \leq_{\mathcal{T}} R$



We write $\mathbf{B} \leq_{\mathcal{T}} \mathbf{A}$ if *B* is a subuniverse of **A** of type \mathcal{T} (Here $\mathcal{T} \in \{BA(t), C, L, PC\}$)

Theorem

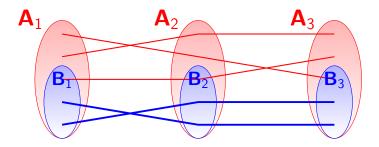
Suppose $R \leq_{sd} \mathbf{A}_1 \times \cdots \times \mathbf{A}_s$, $\mathbf{B}_i \leq_{\mathcal{T}} \mathbf{A}_i$ for every *i*. Then 1. $R \cap (B_1 \times \cdots \times B_n) \leq_{\mathcal{T}} R$



We write $\mathbf{B} \leq_{\mathcal{T}} \mathbf{A}$ if *B* is a subuniverse of **A** of type \mathcal{T} (Here $\mathcal{T} \in \{BA(t), C, L, PC\}$)

Theorem

Suppose $R \leq_{sd} \mathbf{A}_1 \times \cdots \times \mathbf{A}_s$, $\mathbf{B}_i \leq_{\mathcal{T}} \mathbf{A}_i$ for every *i*. Then 1. $R \cap (B_1 \times \cdots \times B_n) \leq_{\mathcal{T}} R$



We write $\mathbf{B} \leq_{\mathcal{T}} \mathbf{A}$ if *B* is a subuniverse of \mathbf{A} of type \mathcal{T} (Here $\mathcal{T} \in \{BA(t), C, L, PC\}$)

Theorem

Suppose $R \leq_{sd} A_1 \times \cdots \times A_s$, $B_i \leq_{\mathcal{T}} A_i$ for every *i*. Then

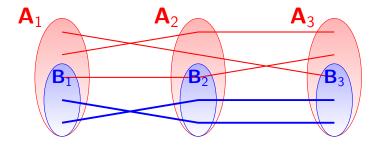
2. $\operatorname{proj}_1(R \cap (B_1 \times \cdots \times B_n)) \leq_{\mathcal{T}} \mathbf{A}_1$ whenever \mathbf{A}_1 has no binary absorption or center, or $\mathcal{T} \notin \{L, PC\}$

We write $\mathbf{B} \leq_{\mathcal{T}} \mathbf{A}$ if *B* is a subuniverse of **A** of type \mathcal{T} (Here $\mathcal{T} \in \{BA(t), C, L, PC\}$)

Theorem

Suppose $R \leq_{sd} A_1 \times \cdots \times A_s$, $B_i \leq_{\mathcal{T}} A_i$ for every *i*. Then

2. $\operatorname{proj}_1(R \cap (B_1 \times \cdots \times B_n)) \leq_{\mathcal{T}} \mathbf{A}_1$ whenever \mathbf{A}_1 has no binary absorption or center, or $\mathcal{T} \notin \{L, PC\}$

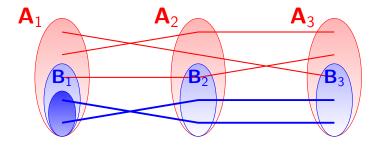


We write $\mathbf{B} \leq_{\mathcal{T}} \mathbf{A}$ if *B* is a subuniverse of **A** of type \mathcal{T} (Here $\mathcal{T} \in \{BA(t), C, L, PC\}$)

Theorem

Suppose $R \leq_{sd} A_1 \times \cdots \times A_s$, $B_i \leq_{\mathcal{T}} A_i$ for every *i*. Then

2. $\operatorname{proj}_1(R \cap (B_1 \times \cdots \times B_n)) \leq_{\mathcal{T}} \mathbf{A}_1$ whenever \mathbf{A}_1 has no binary absorption or center, or $\mathcal{T} \notin \{L, PC\}$



We write $\mathbf{B} \leq_{\mathcal{T}} \mathbf{A}$ if *B* is a subuniverse of **A** of type \mathcal{T} (Here $\mathcal{T} \in \{BA(t), C, L, PC\}$)

Theorem

Suppose $R \leq_{sd} \mathbf{A}_1 \times \cdots \times \mathbf{A}_s$, $\mathbf{B}_i \leq_{\mathcal{T}} \mathbf{A}_i$ for every *i*. Then

3.
$$R \cap (B_1 \times \cdots \times B_{i-1} \times A \times B_{i+1} \times \cdots \times B_n) \neq \emptyset$$
 for every *i* implies $R \cap (B_1 \times \cdots \times B_n) \neq \emptyset$ whenever

•
$$\mathcal{T} = BA(t)$$
 and $n \geq 2$, or

•
$$\mathcal{T} \in \{C, PC\}$$
 and $n \geq 3$

We write $\mathbf{B} \leq_{\mathcal{T}} \mathbf{A}$ if *B* is a subuniverse of **A** of type \mathcal{T} (Here $\mathcal{T} \in \{BA(t), C, L, PC\}$)

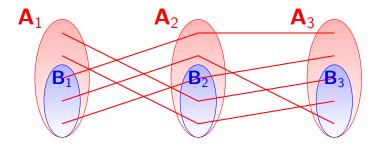
Theorem

Suppose $R \leq_{sd} \mathbf{A}_1 \times \cdots \times \mathbf{A}_s$, $\mathbf{B}_i \leq_{\mathcal{T}} \mathbf{A}_i$ for every *i*. Then

3.
$$R \cap (B_1 \times \cdots \times B_{i-1} \times A \times B_{i+1} \times \cdots \times B_n) \neq \emptyset$$
 for every *i* implies $R \cap (B_1 \times \cdots \times B_n) \neq \emptyset$ whenever

•
$$\mathcal{T}=BA(t)$$
 and $n\geq 2$, or

•
$$\mathcal{T} \in \{C, PC\}$$
 and $n \geq 3$



We write $\mathbf{B} \leq_{\mathcal{T}} \mathbf{A}$ if *B* is a subuniverse of **A** of type \mathcal{T} (Here $\mathcal{T} \in \{BA(t), C, L, PC\}$)

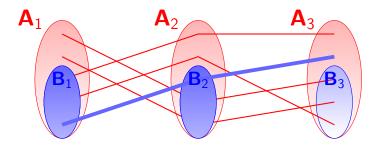
Theorem

Suppose $R \leq_{sd} A_1 \times \cdots \times A_s$, $B_i \leq_{\mathcal{T}} A_i$ for every *i*. Then

3.
$$R \cap (B_1 \times \cdots \times B_{i-1} \times A \times B_{i+1} \times \cdots \times B_n) \neq \emptyset$$
 for every *i* implies $R \cap (B_1 \times \cdots \times B_n) \neq \emptyset$ whenever

•
$$\mathcal{T}=BA(t)$$
 and $n\geq 2$, or

•
$$\mathcal{T} \in \{C, PC\}$$
 and $n \geq 3$



We write $\mathbf{B} \leq_{\mathcal{T}} \mathbf{A}$ if *B* is a subuniverse of **A** of type \mathcal{T} (Here $\mathcal{T} \in \{BA(t), C, L, PC\}$)

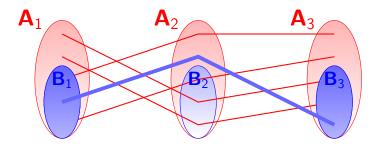
Theorem

Suppose $R \leq_{sd} A_1 \times \cdots \times A_s$, $B_i \leq_{\mathcal{T}} A_i$ for every *i*. Then

3.
$$R \cap (B_1 \times \cdots \times B_{i-1} \times A \times B_{i+1} \times \cdots \times B_n) \neq \emptyset$$
 for every *i* implies $R \cap (B_1 \times \cdots \times B_n) \neq \emptyset$ whenever

•
$$\mathcal{T}=BA(t)$$
 and $n\geq 2$, or

•
$$\mathcal{T} \in \{C, PC\}$$
 and $n \geq 3$



Properties of strong subalgebras

We write $\mathbf{B} \leq_{\mathcal{T}} \mathbf{A}$ if *B* is a subuniverse of **A** of type \mathcal{T} (Here $\mathcal{T} \in \{BA(t), C, L, PC\}$)

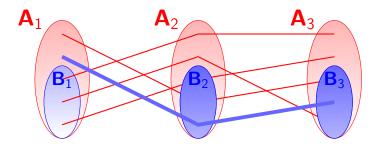
Theorem

Suppose $R \leq_{sd} A_1 \times \cdots \times A_s$, $B_i \leq_{\mathcal{T}} A_i$ for every *i*. Then

3.
$$R \cap (B_1 \times \cdots \times B_{i-1} \times A \times B_{i+1} \times \cdots \times B_n) \neq \emptyset$$
 for every *i* implies $R \cap (B_1 \times \cdots \times B_n) \neq \emptyset$ whenever

•
$$\mathcal{T}=BA(t)$$
 and $n\geq 2$, or

•
$$\mathcal{T} \in \{C, PC\}$$
 and $n \geq 3$



Properties of strong subalgebras

We write $\mathbf{B} \leq_{\mathcal{T}} \mathbf{A}$ if *B* is a subuniverse of **A** of type \mathcal{T} (Here $\mathcal{T} \in \{BA(t), C, L, PC\}$)

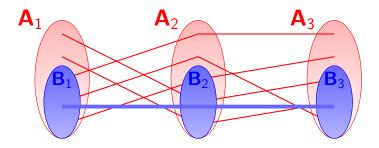
Theorem

Suppose $R \leq_{sd} A_1 \times \cdots \times A_s$, $B_i \leq_{\mathcal{T}} A_i$ for every *i*. Then

3.
$$R \cap (B_1 \times \cdots \times B_{i-1} \times A \times B_{i+1} \times \cdots \times B_n) \neq \emptyset$$
 for every *i* implies $R \cap (B_1 \times \cdots \times B_n) \neq \emptyset$ whenever

•
$$\mathcal{T}=BA(t)$$
 and $n\geq 2$, or

•
$$\mathcal{T} \in \{C, PC\}$$
 and $n \geq 3$



Properties of strong subalgebras

We write $\mathbf{B} \leq_{\mathcal{T}} \mathbf{A}$ if *B* is a subuniverse of \mathbf{A} of type \mathcal{T} (Here $\mathcal{T} \in \{BA(t), C, L, PC\}$)

Theorem

Suppose $R \leq_{sd} A_1 \times \cdots \times A_s$, $B_i \leq_{\mathcal{T}} A_i$ for every *i*. Then

1. $R \cap (B_1 \times \cdots \times B_n) \leq_{\mathcal{T}} R$

- 2. $\operatorname{proj}_1(R \cap (B_1 \times \cdots \times B_n)) \leq_{\mathcal{T}} \mathbf{A}_1$ whenever \mathbf{A}_1 has no binary absorption or center, or $\mathcal{T} \notin \{L, PC\}$
- 3. $R \cap (B_1 \times \cdots \times B_{i-1} \times A \times B_{i+1} \times \cdots \times B_n) \neq \emptyset$ for every *i* implies $R \cap (B_1 \times \cdots \times B_n) \neq \emptyset$ whenever

•
$$\mathcal{T}=BA(t)$$
 and $n\geq 2$, or

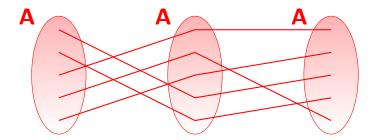
•
$$\mathcal{T} \in \{C, PC\}$$
 and $n \geq 3$.

Suppose $R \leq \mathbf{A}^{p}$ is a (nonempty) totally symmetric relation, where p > |A| is a prime number. Then

- 1. there exists $(a, a, \ldots, a) \in R$, or
- 2. there exists essentially unary $\mathbf{C} \in HS(\mathbf{A})$.

Suppose $R \leq \mathbf{A}^{p}$ is a (nonempty) totally symmetric relation, where p > |A| is a prime number. Then

- 1. there exists $(a, a, \ldots, a) \in R$, or
- 2. there exists essentially unary $\mathbf{C} \in HS(\mathbf{A})$.

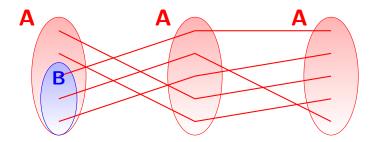


Suppose $R \leq \mathbf{A}^{p}$ is a (nonempty) totally symmetric relation, where p > |A| is a prime number. Then

- 1. there exists $(a, a, \ldots, a) \in R$, or
- 2. there exists essentially unary $\textbf{C}\in HS(\textbf{A}).$

Proof

1. Choose $\mathbf{B} \leq_{\mathcal{T}} \mathbf{A}$.

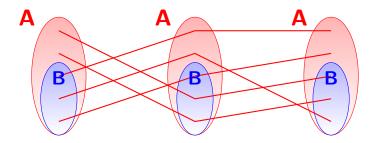


Suppose $R \leq \mathbf{A}^{p}$ is a (nonempty) totally symmetric relation, where p > |A| is a prime number. Then

- 1. there exists $(a, a, \ldots, a) \in R$, or
- 2. there exists essentially unary $C \in HS(A)$.

Proof

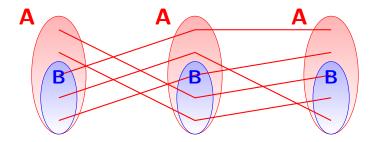
1. Choose $\mathbf{B} \leq_{\mathcal{T}} \mathbf{A}$.



Suppose $R \leq \mathbf{A}^{p}$ is a (nonempty) totally symmetric relation, where p > |A| is a prime number. Then

- 1. there exists $(a, a, \ldots, a) \in R$, or
- 2. there exists essentially unary $\mathbf{C} \in HS(\mathbf{A})$.

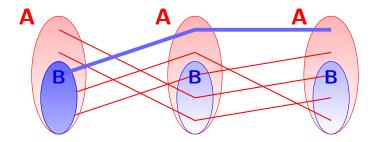
Proof



Suppose $R \leq \mathbf{A}^{p}$ is a (nonempty) totally symmetric relation, where p > |A| is a prime number. Then

- 1. there exists $(a, a, \ldots, a) \in R$, or
- 2. there exists essentially unary $\mathbf{C} \in HS(\mathbf{A})$.

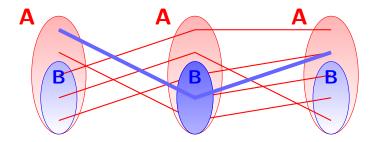
Proof



Suppose $R \leq \mathbf{A}^{p}$ is a (nonempty) totally symmetric relation, where p > |A| is a prime number. Then

- 1. there exists $(a, a, \ldots, a) \in R$, or
- 2. there exists essentially unary $\mathbf{C} \in HS(\mathbf{A})$.

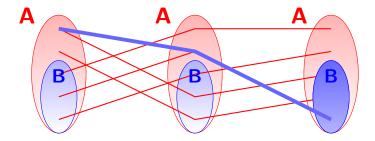
Proof



Suppose $R \leq \mathbf{A}^{p}$ is a (nonempty) totally symmetric relation, where p > |A| is a prime number. Then

- 1. there exists $(a, a, \ldots, a) \in R$, or
- 2. there exists essentially unary $\mathbf{C} \in HS(\mathbf{A})$.

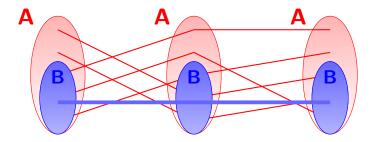
Proof



Suppose $R \leq \mathbf{A}^{p}$ is a (nonempty) totally symmetric relation, where p > |A| is a prime number. Then

- 1. there exists $(a, a, \ldots, a) \in R$, or
- 2. there exists essentially unary $\mathbf{C} \in HS(\mathbf{A})$.

Proof

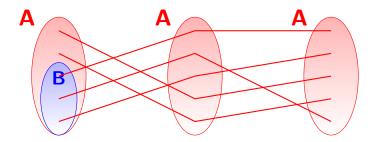


Suppose $R \leq \mathbf{A}^{p}$ is a (nonempty) totally symmetric relation, where p > |A| is a prime number. Then

- 1. there exists $(a, a, \ldots, a) \in R$, or
- 2. there exists essentially unary $\mathbf{C} \in HS(\mathbf{A})$.

Proof

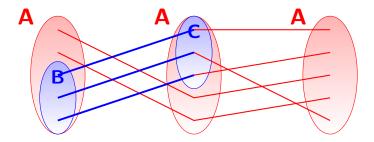
3. If $\mathcal{T} \in \{C, PC\}$ then



Suppose $R \leq \mathbf{A}^{p}$ is a (nonempty) totally symmetric relation, where p > |A| is a prime number. Then

- 1. there exists $(a, a, \ldots, a) \in R$, or
- 2. there exists essentially unary $C \in HS(A)$.

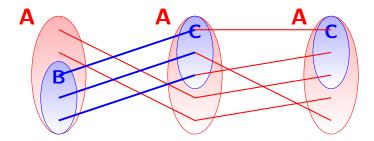
3. If
$$\mathcal{T} \in \{C, PC\}$$
 then
• Put $C = \operatorname{proj}_2(R \cap (B \times A^{p-1}))$



Suppose $R \leq \mathbf{A}^{p}$ is a (nonempty) totally symmetric relation, where p > |A| is a prime number. Then

- 1. there exists $(a, a, \ldots, a) \in R$, or
- 2. there exists essentially unary $\mathbf{C} \in HS(\mathbf{A})$.

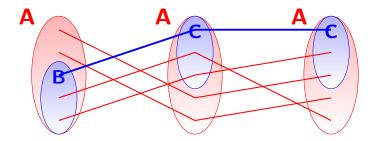
3. If
$$\mathcal{T} \in \{C, PC\}$$
 then
• Put $C = \operatorname{proj}_2(R \cap (B \times A^{p-1}))$
• If $C \neq A$ then $R \cap C^p \neq \emptyset$ (Apply induction



Suppose $R \leq \mathbf{A}^{p}$ is a (nonempty) totally symmetric relation, where p > |A| is a prime number. Then

- 1. there exists $(a, a, \ldots, a) \in R$, or
- 2. there exists essentially unary $\textbf{C}\in HS(\textbf{A}).$

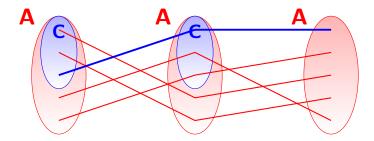
3. If
$$\mathcal{T} \in \{C, PC\}$$
 then
• Put $C = \operatorname{proj}_2(R \cap (B \times A^{p-1}))$
• If $C \neq A$ then $R \cap C^p \neq \emptyset$ (Apply induction



Suppose $R \leq \mathbf{A}^{p}$ is a (nonempty) totally symmetric relation, where p > |A| is a prime number. Then

- 1. there exists $(a, a, \ldots, a) \in R$, or
- 2. there exists essentially unary $C \in HS(A)$.

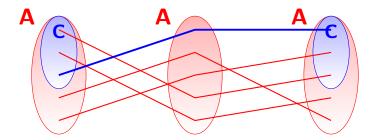
3. If
$$\mathcal{T} \in \{C, PC\}$$
 then
• Put $C = \operatorname{proj}_2(R \cap (B \times A^{p-1}))$
• If $C \neq A$ then $R \cap C^p \neq \emptyset$ (Apply induction)



Suppose $R \leq \mathbf{A}^{p}$ is a (nonempty) totally symmetric relation, where p > |A| is a prime number. Then

- 1. there exists $(a, a, \ldots, a) \in R$, or
- 2. there exists essentially unary $C \in HS(A)$.

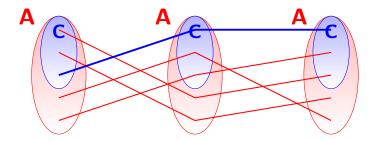
3. If
$$\mathcal{T} \in \{C, PC\}$$
 then
• Put $C = \operatorname{proj}_2(R \cap (B \times A^{p-1}))$
• If $C \neq A$ then $R \cap C^p \neq \emptyset$ (Apply induction



Suppose $R \leq \mathbf{A}^{p}$ is a (nonempty) totally symmetric relation, where p > |A| is a prime number. Then

- 1. there exists $(a, a, \ldots, a) \in R$, or
- 2. there exists essentially unary $C \in HS(A)$.

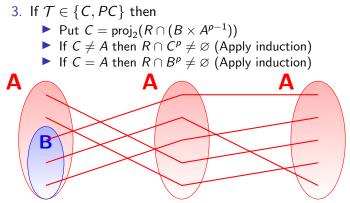
3. If
$$\mathcal{T} \in \{C, PC\}$$
 then
Put $C = \operatorname{proj}_2(R \cap (B \times A^{p-1}))$
If $C \neq A$ then $R \cap C^p \neq \emptyset$ (Apply induction)



Suppose $R \leq \mathbf{A}^{p}$ is a (nonempty) totally symmetric relation, where p > |A| is a prime number. Then

1. there exists $(a, a, \ldots, a) \in R$, or

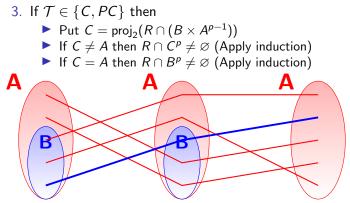
2. there exists essentially unary $\mathbf{C} \in HS(\mathbf{A})$.



Suppose $R \leq \mathbf{A}^{p}$ is a (nonempty) totally symmetric relation, where p > |A| is a prime number. Then

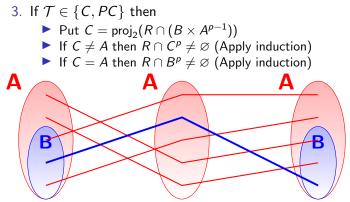
1. there exists $(a, a, \ldots, a) \in R$, or

2. there exists essentially unary $\mathbf{C} \in HS(\mathbf{A})$.



Suppose $R \leq \mathbf{A}^{p}$ is a (nonempty) totally symmetric relation, where p > |A| is a prime number. Then

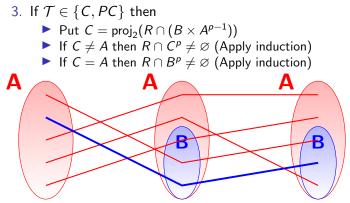
- 1. there exists $(a, a, \ldots, a) \in R$, or
- 2. there exists essentially unary $\mathbf{C} \in HS(\mathbf{A})$.



Suppose $R \leq \mathbf{A}^{p}$ is a (nonempty) totally symmetric relation, where p > |A| is a prime number. Then

1. there exists $(a, a, \ldots, a) \in R$, or

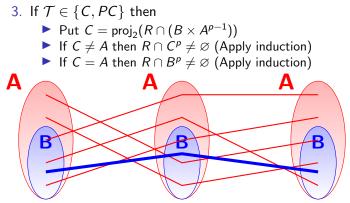
2. there exists essentially unary $\mathbf{C} \in HS(\mathbf{A})$.



Suppose $R \leq \mathbf{A}^{p}$ is a (nonempty) totally symmetric relation, where p > |A| is a prime number. Then

1. there exists $(a, a, \ldots, a) \in R$, or

2. there exists essentially unary $\mathbf{C} \in HS(\mathbf{A})$.



Suppose $R \leq \mathbf{A}^{p}$ is a (nonempty) totally symmetric relation, where p > |A| is a prime number. Then

- 1. there exists $(a,a,\ldots,a)\in R$, or
- 2. there exists essentially unary $\textbf{C}\in HS(\textbf{A}).$

Proof

4. If $\mathcal{T} = L$ then

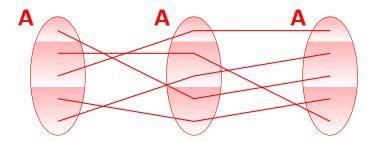
Suppose $R \leq \mathbf{A}^{p}$ is a (nonempty) totally symmetric relation, where p > |A| is a prime number. Then

- 1. there exists $(a, a, \ldots, a) \in R$, or
- 2. there exists essentially unary $\mathbf{C} \in HS(\mathbf{A})$.

Proof

4. If $\mathcal{T} = L$ then

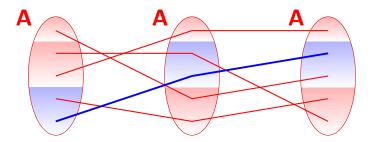
▶ Factorize the relation *R* (we get a system of linear equations).



Suppose $R \leq \mathbf{A}^{p}$ is a (nonempty) totally symmetric relation, where p > |A| is a prime number. Then

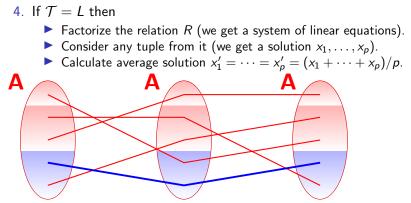
- 1. there exists $(a, a, \ldots, a) \in R$, or
- 2. there exists essentially unary $\mathbf{C} \in HS(\mathbf{A})$.

- 4. If $\mathcal{T} = L$ then
 - ▶ Factorize the relation *R* (we get a system of linear equations).
 - Consider any tuple from it (we get a solution x_1, \ldots, x_p).



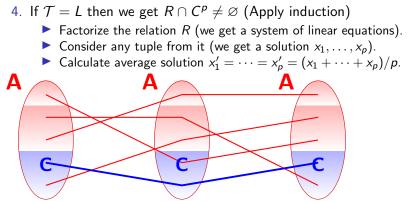
Suppose $R \leq \mathbf{A}^{p}$ is a (nonempty) totally symmetric relation, where p > |A| is a prime number. Then

- 1. there exists $(a, a, \ldots, a) \in R$, or
- 2. there exists essentially unary $\mathbf{C} \in HS(\mathbf{A})$.



Suppose $R \leq \mathbf{A}^{p}$ is a (nonempty) totally symmetric relation, where p > |A| is a prime number. Then

- 1. there exists $(a, a, \ldots, a) \in R$, or
- 2. there exists essentially unary $\mathbf{C} \in HS(\mathbf{A})$.



Suppose $R \leq \mathbf{A}^{p}$ is a (nonempty) totally symmetric relation, where p > |A| is a prime number. Then

- 1. there exists $(a, a, \ldots, a) \in R$, or
- 2. there exists essentially unary $C \in HS(A)$.

- 1. Choose $\mathbf{B} \leq_{\mathcal{T}} \mathbf{A}$.
- 2. If $\mathcal{T} = BA(t)$ then $R \cap B^n \neq \emptyset$ (Apply induction)
- 3. If $\mathcal{T} \in \{C, PC\}$ then
 - Put $C = \operatorname{proj}_2(R \cap (B \times A^{p-1}))$
 - If $C \neq A$ then $R \cap C^p \neq \emptyset$ (Apply induction)
 - If C = A then $R \cap B^p \neq \emptyset$ (Apply induction)
- 4. If $\mathcal{T} = L$ then we get $R \cap C^p \neq \varnothing$ (Apply induction)
 - Factorize the relation R (we get a system of linear equations).
 - Consider any tuple from it (we get a solution x₁,..., x_p).
 - Calculate average solution $x'_1 = \cdots = x'_p = (x_1 + \cdots + x_p)/p$.

Suppose $R \leq \mathbf{A}^{p}$ is a (nonempty) totally symmetric relation, where p > |A| is a prime number. Then

- 1. there exists $(a, a, \ldots, a) \in R$, or
- 2. there exists essentially unary $C \in HS(A)$.

- 1. Choose $\mathbf{B} \leq_{\mathcal{T}} \mathbf{A}$.
- 2. If $\mathcal{T} = BA(t)$ then $R \cap B^n \neq \emptyset$ (Apply induction)
- 3. If $\mathcal{T} \in \{C, PC\}$ then
 - Put $C = \operatorname{proj}_2(R \cap (B \times A^{p-1}))$
 - If $C \neq A$ then $R \cap C^p \neq \emptyset$ (Apply induction)
 - If C = A then $R \cap B^p \neq \emptyset$ (Apply induction)
- 4. If $\mathcal{T} = L$ then we get $R \cap C^p \neq \varnothing$ (Apply induction)
 - ▶ Factorize the relation *R* (we get a system of linear equations).
 - Consider any tuple from it (we get a solution x₁,..., x_p).
 - Calculate average solution $x'_1 = \cdots = x'_p = (x_1 + \cdots + x_p)/p$.
- 5. If $\mathcal{T} = CTB$ then there exists essentially unary $\mathbf{C} \in HS(\mathbf{A})$.

Every finite idempotent algebra A

1. has a WNU* term operation, or

* $w(y,x,\ldots,x) = w(x,y,x,\ldots,x) = \cdots = w(x,\ldots,x,y)$

2. has essentially unary $\mathbf{C} \in HSP(\mathbf{A})$.

Every finite idempotent algebra A

1. has a WNU* term operation, or

* $w(y,x,\ldots,x) = w(x,y,x,\ldots,x) = \cdots = w(x,\ldots,x,y)$

2. has essentially unary $\mathbf{C} \in HSP(\mathbf{A})$.

Proof

Consider a free algebra over $\{x, y\}$ and generate a relation R from

$$\begin{pmatrix} y & x & \dots & x \\ x & y & \dots & x \\ \vdots & \vdots & \ddots & \vdots \\ x & x & \dots & y \end{pmatrix}$$

.

Every finite idempotent algebra A

1. has a WNU* term operation, or

* $w(y,x,\ldots,x) = w(x,y,x,\ldots,x) = \cdots = w(x,\ldots,x,y)$

2. has essentially unary $\mathbf{C} \in HSP(\mathbf{A})$.

Proof

Consider a free algebra over $\{x, y\}$ and generate a relation R from

$$\begin{pmatrix} y & x & \dots & x \\ x & y & \dots & x \\ \vdots & \vdots & \ddots & \vdots \\ x & x & \dots & y \end{pmatrix}$$

R is totally symmetric

Every finite idempotent algebra A

1. has a WNU* term operation, or

* $w(y,x,\ldots,x) = w(x,y,x,\ldots,x) = \cdots = w(x,\ldots,x,y)$

2. has essentially unary $\mathbf{C} \in HSP(\mathbf{A})$.

Proof

Consider a free algebra over $\{x, y\}$ and generate a relation R from

$$\begin{pmatrix} y & x & \dots & x \\ x & y & \dots & x \\ \vdots & \vdots & \ddots & \vdots \\ x & x & \dots & y \end{pmatrix}$$

R is totally symmetric \Rightarrow

Every finite idempotent algebra A

1. has a WNU* term operation, or

* $w(y,x,\ldots,x) = w(x,y,x,\ldots,x) = \cdots = w(x,\ldots,x,y)$

2. has essentially unary $\mathbf{C} \in HSP(\mathbf{A})$.

Proof

Consider a free algebra over $\{x, y\}$ and generate a relation R from

$$\begin{pmatrix} y & x & \dots & x \\ x & y & \dots & x \\ \vdots & \vdots & \ddots & \vdots \\ x & x & \dots & y \end{pmatrix}$$

R is totally symmetric \Rightarrow

R has a constant tuple

Claim 1 [M. Maróti and R. Mckenzie, 2008]

Every finite idempotent algebra A

1. has a WNU* term operation, or

* $w(y,x,\ldots,x) = w(x,y,x,\ldots,x) = \cdots = w(x,\ldots,x,y)$

2. has essentially unary $\mathbf{C} \in HSP(\mathbf{A})$.

Proof

Consider a free algebra over $\{x, y\}$ and generate a relation R from

$$\begin{pmatrix} y & x & \dots & x \\ x & y & \dots & x \\ \vdots & \vdots & \ddots & \vdots \\ x & x & \dots & y \end{pmatrix}$$

R is totally symmetric \Rightarrow

• *R* has a constant tuple \Rightarrow **A** has a WNU.

Claim 1 [M. Maróti and R. Mckenzie, 2008]

Every finite idempotent algebra A

1. has a WNU* term operation, or

* $w(y,x,\ldots,x) = w(x,y,x,\ldots,x) = \cdots = w(x,\ldots,x,y)$

2. has essentially unary $\mathbf{C} \in HSP(\mathbf{A})$.

Proof

Consider a free algebra over $\{x, y\}$ and generate a relation R from

$$\begin{pmatrix} y & x & \dots & x \\ x & y & \dots & x \\ \vdots & \vdots & \ddots & \vdots \\ x & x & \dots & y \end{pmatrix}$$

R is totally symmetric \Rightarrow

- R has a constant tuple \Rightarrow A has a WNU.
- ► there exists essentially unary C ∈ HSP(A)

Lemma 2

Suppose **A** is a finite idempotent algebra with bounded width, $R \leq \mathbf{A}^n$ is a (nonempty) totally symmetric relation, where $n \geq 3$. Then there exists $(a, a, ..., a) \in R$.

Lemma 2

Suppose **A** is a finite idempotent algebra with bounded width, $R \leq \mathbf{A}^n$ is a (nonempty) totally symmetric relation, where $n \geq 3$. Then there exists $(a, a, ..., a) \in R$.

Claim 2 [M. Kozik, A. Krokhin, M. Valeriote, R. Willard, 2015] Every finite idempotent algebra **A** with bounded width has a WNU* term operation of every arity greater than two. * $w(y, x, ..., x) = w(x, y, x, ..., x) = \cdots = w(x, ..., x, y)$

Let Γ be a set of (multi-sorted) relations. Set of its polymorphism forms an algebra on every domain.

Let Γ be a set of (multi-sorted) relations. Set of its polymorphism forms an algebra on every domain.

CSP Instance

CSP instance over a constraint language Γ is

$$R_1(\ldots) \wedge R_2(\ldots) \wedge \cdots \wedge R_s(\ldots),$$

where each $R_i \in \Gamma$. The domain of x_i is \mathbf{A}_i

Let Γ be a set of (multi-sorted) relations. Set of its polymorphism forms an algebra on every domain.

CSP Instance

CSP instance over a constraint language Γ is

$$R_1(\ldots) \wedge R_2(\ldots) \wedge \cdots \wedge R_s(\ldots),$$

where each $R_i \in \Gamma$. The domain of x_i is \mathbf{A}_i

Cycle-consistency

Any cycle $x_{i_1}R_{j_1}x_{i_2}R_{j_2}\ldots R_{j_k}x_{i_1}$ is consistent.

Let Γ be a set of (multi-sorted) relations. Set of its polymorphism forms an algebra on every domain.

CSP Instance

CSP instance over a constraint language Γ is

$$R_1(\ldots) \wedge R_2(\ldots) \wedge \cdots \wedge R_s(\ldots),$$

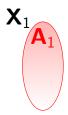
where each $R_i \in \Gamma$. The domain of x_i is \mathbf{A}_i

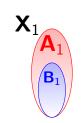
Cycle-consistency

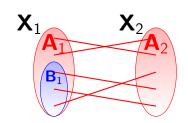
Any cycle $x_{i_1}R_{j_1}x_{i_2}R_{j_2}\ldots R_{j_k}x_{i_1}$ is consistent.

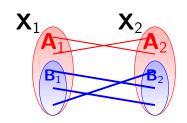
Claim 3 [M. Kozik. 2016]

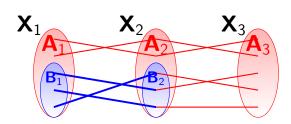
Every cycle-consistent ((2,3)-consistent) CSP instance \mathcal{I} over a constraint language with bounded width has a solution.

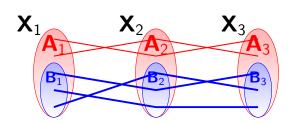


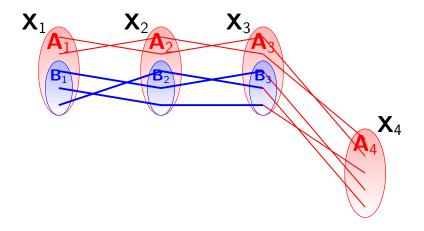


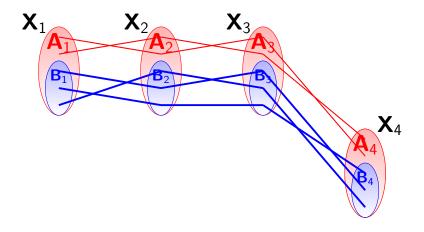


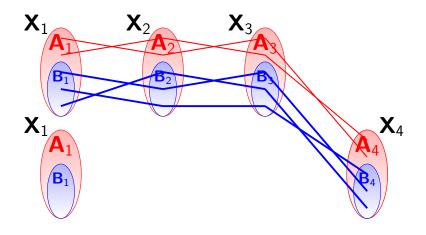


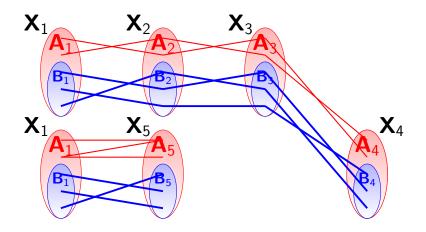


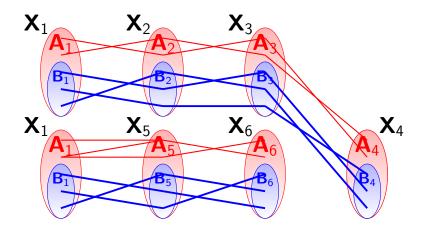


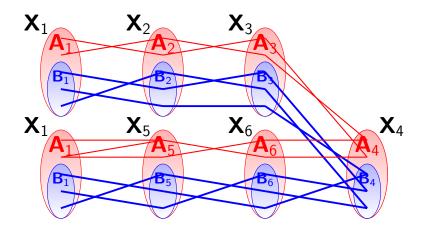


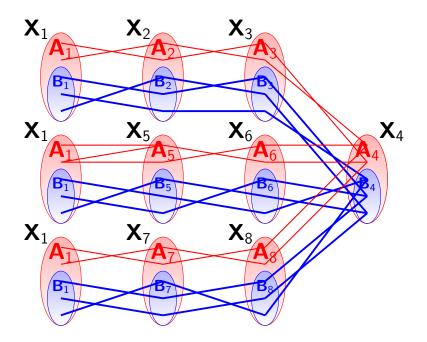


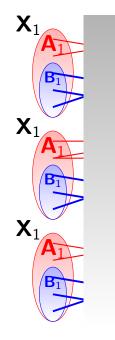


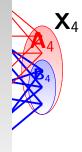


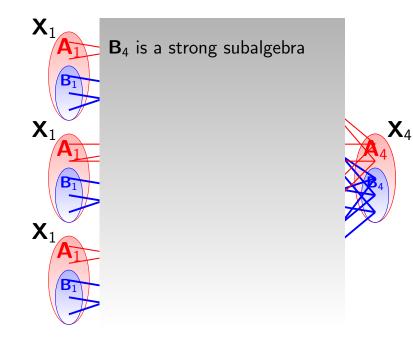


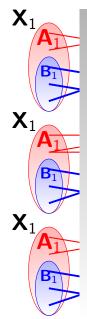




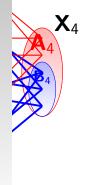


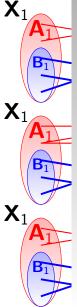




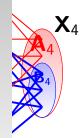


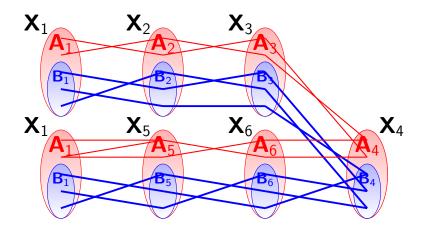
Let us show that $B_4 \neq \emptyset$

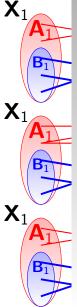




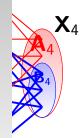
Let us show that $B_4 \neq \emptyset$

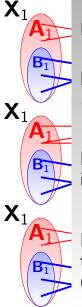






Let us show that $B_4 \neq \emptyset$





Let us show that $B_4 \neq \varnothing$

If X_1 appears more than twice it follows from the property \mathbf{X}_4

Thank you for your attention