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Regular tree languages

Definition

A finite set of function symbols that includes at least one constant
symbol will be referred to as a ranked alphabet.

For Σ a ranked alphabet, the set of Σ-trees, denoted treesΣ, is the
set of variable-free Σ terms.

A Σ-language is any subset of treesΣ.

Definition

A Σ-reduct of an algebra A is any algebra of type Σ that has universe
A and whose basic operations are all polynomial operations of A.

A finite algebra A recognizes the Σ-language L if there is some
Σ-reduct A′ of A and some subset F of A such that

L = {t ∈ treesΣ | tA′ ∈ F}.

A Σ-language L is regular if it is recognized by some finite algebra.
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Regular tree language example

Example

1 Let Σ be the ranked alphabet that has one rank 2 symbol b, one rank
1 symbol a, and one rank 0 symbol c .

2 Let E be the tree language consisting of all Σ-trees whose branches
all have even length.

3 Then the following algebra E recognizes E :

E = 〈{0, 1, 2}, aE, bE, cE〉,

bE 0 1 2

0 1 2 2
1 2 0 2
2 2 2 2

x aE(x)

0 1
1 0
2 2

cE = 0
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Trees as models

Any tree t ∈ treesΣ for some ranked alphabet Σ can be viewed as a
finite relational structure Mt with

universe the set of nodes of t,
the binary descendant relation ≤ of t,
unary predicates for each symbol from Σ, and
an ith child relation for each suitable i .

Using various logics, we can express certain tree properties and define
some tree languages using these structures.

Example

The first order sentence:

∃x ((∀y y ≤ x) ∧ a(x)) ∧ ∃z(b(z))

defines the set of Σ-trees that have the symbol a as their root and in
which b occurs at least once.
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Definable tree languages

Definition

Monadic second order logic (MSO) is the extension of first order logic
that allows for quantification over arbitrary subsets of the universe.

For ordered structures, chain logic is a version of MSO where
quantification only over linearly ordered subsets is allowed.

Theorem (Thatcher and Wright)

A tree language L is regular if and only if it is definable by an MSO
sentence.

Definability problem

The definability problem for a given fragment of MSO, such as first-order
or chain logic, is: given a regular tree language, decide if it is definable by
some formula of the logic.
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Chain logic definability

The Σ-tree language E , whose members all have branches of even
length, can be defined in Chain logic.

A Σ-tree t will be in E if and only if

Every maximal chain of t can be partitioned into two subchains X
and Y that interleave such that
- X contains the leaf of the branch and
- Y contains the root.

This tree language is not first order definable, since the property of
being of even length cannot be defined in the first order language of
Σ-trees.
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Definability and the syntactic algebra

Syntactic Algebra

If L is a regular Σ-language, then there is a smallest finite algebra AL of
type Σ that recognizes L, called the syntactic algebra of L.

Theorem

Let L be a regular tree language.

Being first-order definable is a property of AL (but not of Clo(AL)).

Being chain logic definable is a property of Pol(AL), the set of
polynomials of AL.

Theorem (Schützenberger)

Let L be a regular language over an alphabet of rank 1. Then L is
first-order definable if and only if there is some n > 0 such that
AL |= tn(x) ≈ tn+1(x) for all unary terms t.
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Two problems

First Order definability

Is there an algorithm to decide if a given regular tree language is first order
definable?

Chain Logic definability

Is there an algorithm to decide if a given regular tree language is chain
logic definable?

Remark

In light of the previous slide, both problems can be re-phrased in terms of
properties of syntactic algebras of regular languages.

Both problems are still open.

Matt Valeriote (McMaster University) Finite algebras and regular tree languages 15 January 2020 9 / 16



Two problems

First Order definability

Is there an algorithm to decide if a given regular tree language is first order
definable?

Chain Logic definability

Is there an algorithm to decide if a given regular tree language is chain
logic definable?

Remark

In light of the previous slide, both problems can be re-phrased in terms of
properties of syntactic algebras of regular languages.

Both problems are still open.

Matt Valeriote (McMaster University) Finite algebras and regular tree languages 15 January 2020 9 / 16



Two problems

First Order definability

Is there an algorithm to decide if a given regular tree language is first order
definable?

Chain Logic definability

Is there an algorithm to decide if a given regular tree language is chain
logic definable?

Remark

In light of the previous slide, both problems can be re-phrased in terms of
properties of syntactic algebras of regular languages.

Both problems are still open.

Matt Valeriote (McMaster University) Finite algebras and regular tree languages 15 January 2020 9 / 16



Two problems

First Order definability

Is there an algorithm to decide if a given regular tree language is first order
definable?

Chain Logic definability

Is there an algorithm to decide if a given regular tree language is chain
logic definable?

Remark

In light of the previous slide, both problems can be re-phrased in terms of
properties of syntactic algebras of regular languages.

Both problems are still open.

Matt Valeriote (McMaster University) Finite algebras and regular tree languages 15 January 2020 9 / 16



Two problems

First Order definability

Is there an algorithm to decide if a given regular tree language is first order
definable?

Chain Logic definability

Is there an algorithm to decide if a given regular tree language is chain
logic definable?

Remark

In light of the previous slide, both problems can be re-phrased in terms of
properties of syntactic algebras of regular languages.
Both problems are still open.

Matt Valeriote (McMaster University) Finite algebras and regular tree languages 15 January 2020 9 / 16



Simulation classes

Remarks

Bojańczyk has shown that a tree language is chain logic definable if
and only if its syntactic algebra belongs a particular class of finite
algebras that is closed under the operations of division, matrix
powers, and wreath products.

We call such a class of algebras a simulation class and denote the
smallest simulation class that contains a class K of finite algebras by
Sim(K).

Simulation classes were first studied by Joel VanderWerf in his 1994
PhD thesis.

Definition

An algebra B is a divisor of an algebra A if it is a homomorphic image of a
subalgebra of a reduct of A.

D(K) denotes the class of divisors of the
algebras in K.
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Matrix powers

Definition

Let A be an algebra with clone C = Clo(A) and let n > 0. The n-th matrix
power of A is the algebra with universe An and whose basic operations are
all functions f (x̄1, . . . , x̄k) of the form: for some choice of nk-ary functions
f1, f2, . . . , fn ∈ C,

(ā1, . . . , āk) 7→ (f1(ā1, . . . , āk), . . . , fn(ā1, . . . , āk))

We denote this algebra by A[n]. For K a class of algebras, let M(K)
denote the set of matrix powers of algebras in K.

Remarks

The collection of operations of A[n] is a clone.

The matrix power construction is a generalization of the cartesian
power of an algebra in the sense that An is a reduct of A[n].
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Matrix Power Example

The function

((a1, a2, a3), (b1, b2, b3), (c1, c2, c3))→ (b3, a1 ∨ a2 ∨ c1, b1 ∨ c1)

is in the clone of 〈{0, 1},∨〉[3].

b2b1 b3 c2c1 c3a2a1 a3
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Wreath products

Definition

Let A = 〈A,F〉 and B = 〈B,G〉 be algebras with F and G clones.

The wreath product of A and B is the algebra with universe A× B
that has the following set of basic operations:

For k ≥ 1, let g(x1, . . . , xk) ∈ G, and

h̄ be a tuple of k-ary functions in F indexed by Bk (so h̄ ∈ FBk

k ).

Define (h̄, g) to be the k-ary operation on A× B that maps
((a1, b1), . . . , (ak , bk)) to

(h̄(b1, . . . , bk)(a1, . . . , ak), g(b1, . . . , bk)).

We denote this algebra by A ◦ B
For K a class of algebras, let Wr(K) denote the class of all wreath
products of members from K.

Matt Valeriote (McMaster University) Finite algebras and regular tree languages 15 January 2020 13 / 16



Wreath products

Definition

Let A = 〈A,F〉 and B = 〈B,G〉 be algebras with F and G clones.

The wreath product of A and B is the algebra with universe A× B
that has the following set of basic operations:

For k ≥ 1, let g(x1, . . . , xk) ∈ G, and

h̄ be a tuple of k-ary functions in F indexed by Bk (so h̄ ∈ FBk

k ).

Define (h̄, g) to be the k-ary operation on A× B that maps
((a1, b1), . . . , (ak , bk)) to

(h̄(b1, . . . , bk)(a1, . . . , ak), g(b1, . . . , bk)).

We denote this algebra by A ◦ B
For K a class of algebras, let Wr(K) denote the class of all wreath
products of members from K.

Matt Valeriote (McMaster University) Finite algebras and regular tree languages 15 January 2020 13 / 16



Wreath products

Definition

Let A = 〈A,F〉 and B = 〈B,G〉 be algebras with F and G clones.

The wreath product of A and B is the algebra with universe A× B
that has the following set of basic operations:

For k ≥ 1, let g(x1, . . . , xk) ∈ G, and

h̄ be a tuple of k-ary functions in F indexed by Bk (so h̄ ∈ FBk

k ).

Define (h̄, g) to be the k-ary operation on A× B that maps
((a1, b1), . . . , (ak , bk)) to

(h̄(b1, . . . , bk)(a1, . . . , ak), g(b1, . . . , bk)).

We denote this algebra by A ◦ B
For K a class of algebras, let Wr(K) denote the class of all wreath
products of members from K.

Matt Valeriote (McMaster University) Finite algebras and regular tree languages 15 January 2020 13 / 16



Wreath products

Definition

Let A = 〈A,F〉 and B = 〈B,G〉 be algebras with F and G clones.

The wreath product of A and B is the algebra with universe A× B
that has the following set of basic operations:

For k ≥ 1, let g(x1, . . . , xk) ∈ G, and

h̄ be a tuple of k-ary functions in F indexed by Bk (so h̄ ∈ FBk

k ).

Define (h̄, g) to be the k-ary operation on A× B that maps
((a1, b1), . . . , (ak , bk)) to

(h̄(b1, . . . , bk)(a1, . . . , ak), g(b1, . . . , bk)).

We denote this algebra by A ◦ B
For K a class of algebras, let Wr(K) denote the class of all wreath
products of members from K.

Matt Valeriote (McMaster University) Finite algebras and regular tree languages 15 January 2020 13 / 16



Wreath products

Definition

Let A = 〈A,F〉 and B = 〈B,G〉 be algebras with F and G clones.

The wreath product of A and B is the algebra with universe A× B
that has the following set of basic operations:

For k ≥ 1, let g(x1, . . . , xk) ∈ G, and

h̄ be a tuple of k-ary functions in F indexed by Bk (so h̄ ∈ FBk

k ).

Define (h̄, g) to be the k-ary operation on A× B that maps
((a1, b1), . . . , (ak , bk)) to

(h̄(b1, . . . , bk)(a1, . . . , ak), g(b1, . . . , bk)).

We denote this algebra by A ◦ B
For K a class of algebras, let Wr(K) denote the class of all wreath
products of members from K.

Matt Valeriote (McMaster University) Finite algebras and regular tree languages 15 January 2020 13 / 16



Wreath products

Definition

Let A = 〈A,F〉 and B = 〈B,G〉 be algebras with F and G clones.

The wreath product of A and B is the algebra with universe A× B
that has the following set of basic operations:

For k ≥ 1, let g(x1, . . . , xk) ∈ G, and

h̄ be a tuple of k-ary functions in F indexed by Bk (so h̄ ∈ FBk

k ).

Define (h̄, g) to be the k-ary operation on A× B that maps
((a1, b1), . . . , (ak , bk)) to

(h̄(b1, . . . , bk)(a1, . . . , ak), g(b1, . . . , bk)).

We denote this algebra by A ◦ B
For K a class of algebras, let Wr(K) denote the class of all wreath
products of members from K.

Matt Valeriote (McMaster University) Finite algebras and regular tree languages 15 January 2020 13 / 16



Wreath products

Definition

Let A = 〈A,F〉 and B = 〈B,G〉 be algebras with F and G clones.

The wreath product of A and B is the algebra with universe A× B
that has the following set of basic operations:

For k ≥ 1, let g(x1, . . . , xk) ∈ G, and

h̄ be a tuple of k-ary functions in F indexed by Bk (so h̄ ∈ FBk

k ).

Define (h̄, g) to be the k-ary operation on A× B that maps
((a1, b1), . . . , (ak , bk)) to

(h̄(b1, . . . , bk)(a1, . . . , ak), g(b1, . . . , bk)).

We denote this algebra by A ◦ B

For K a class of algebras, let Wr(K) denote the class of all wreath
products of members from K.

Matt Valeriote (McMaster University) Finite algebras and regular tree languages 15 January 2020 13 / 16



Wreath products

Definition

Let A = 〈A,F〉 and B = 〈B,G〉 be algebras with F and G clones.

The wreath product of A and B is the algebra with universe A× B
that has the following set of basic operations:

For k ≥ 1, let g(x1, . . . , xk) ∈ G, and

h̄ be a tuple of k-ary functions in F indexed by Bk (so h̄ ∈ FBk

k ).

Define (h̄, g) to be the k-ary operation on A× B that maps
((a1, b1), . . . , (ak , bk)) to

(h̄(b1, . . . , bk)(a1, . . . , ak), g(b1, . . . , bk)).

We denote this algebra by A ◦ B
For K a class of algebras, let Wr(K) denote the class of all wreath
products of members from K.

Matt Valeriote (McMaster University) Finite algebras and regular tree languages 15 January 2020 13 / 16



Wreath products

Remarks

In general the wreath product is not commutative.

B is a homomorphic image of A ◦ B via the projection map onto the
second coordinate.

Con (A ◦ B) is isomorphic to a copy of Con (B) glued on top of a
copy of Con (A).

A and B are subreducts of A ◦ B.

If A′ ≺ A and B′ ≺ B then A′ ◦ B′ ≺ A ◦ B so WrD(K) ⊆ DWr(K).

Matrix powers and wreath products commute: (A ◦ B)[k] is
isomorphic to A[k] ◦ B[k], so WrM(K) = MWr(K).

So, the smallest class of algebras that contains K and is closed under
division, matrix powers, and wreath products is DWrM(K), i.e.,
Sim(K) = DWrM(K).
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Chain Logic

Theorem (Bojańczyk)

The class of tree languages recognized by algebras in Sim(〈{0, 1},∨〉) is
equal to the class of tree languages that are definable in Chain Logic.

Corollary

The definability problem for Chain Logic is equivalent to the membership
problem for the simulation class Sim(〈{0, 1},∨〉).

Remark

Using the work of VanderWerf, this problem reduces to the problem of
determining if there is a procedure to decide if a given finite simple algebra
of semilattice type is equal to a divisor of wreath products of matrix
powers of 〈{0, 1},∨〉.
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Simulation classes

VanderWerf has established a number of interesting/surprising results
about simulation classes.

For example, the class of finite strongly solvable algebras is equal to
Sim(〈{0, 1}〉), the smallest non-trivial simulation class, and

the class of finite solvable algebras is equal to Sim({Zp | p prime}).

If A is a finite algebra that admits the lattice or boolean type then
Sim(A) is the class of all finite algebras.
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