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1965: Oates and Powell prove that the equational theory of any
finite group is finitely axiomatizable.

1970: McKenzie proved that the equational theory of any finite
lattice is finitely axiomatizable.

1973: Kruse and L’vov proved that the equational theory of any
finite ring is finitely axiomatizable.
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Why?

Where is the proof for the BOOK?



Baker proved more

Kirby Baker proved that every finite algebra of finite signature that
generates a conguence distributive variety has a finitlely
axiomatizable equational theory.

There is more: to any finite algebra satisfying Kirby’s hypotheses,
you can add finitely many new basic operations. The resulting
finite algebra still has a finitely axiomatizable equational theory.
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Expandably Finitely Based Finite Algebras

Call a finite algebra of finite signature expandably finitely based
provided every algebra obtained from it by adding finitely many
additional basic operations has a finitely axiomatizable equational
theories.



What do you think?

Are there others besides the ones generating a congruence
distributive variety??

How about the 2 element algebras?

How about the paraprimal algebras?

How about some others?
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Most of the finite basis results, either explicitly or implicitly, use
the condition that the variety generated by the finite algebra has a
finite residual bound. Bjarni Jónsson speculated in the early 1970’s
that this condition might be sufficient.



Problem
Prove that any finite algebra of finite signature that supports a
Taylor term must have a finitely axiomatizable equational theory.



The Question is Subtle

In 1995 Ralph McKenzie published a proof that there is no
algorithm, which given a finite algebra of finite signature, would
determine whether it’s equational theory is finitely
axiomatizable—settling Tarski’s Finite Basis Problem.



Finite Algebra Membership Problem

Let V be the variety generated by the finite algebra A of finite
signature. The Finite Algebra Membership Problem for V is given
a finite algebra B to determine whether B ∈ V.



Another Problem

Is there an algorithm, which given a finite algebra A of finite
signature will determine whether the finite algebra membership
problem for the variety generated by A can be settled in
polynomial time?



One Last Problem

Do you believe in Volume II?


