What I would STILL like to know about equational logic

George McNulty

Department of Mathematics University of South Carolina

Algebras and Algorithms Joint Mathematical Meetings Denver, Colorado 15 January 2020

1970: McKenzie proved that the equational theory of any finite lattice is finitely axiomatizable.
1973: Kruse and L'vov proved that the equational theory of any finite ring is finitely axiomatizable.

1970: McKenzie proved that the equational theory of any finite lattice is finitely axiomatizable.
1973: Kruse and L'vov proved that the equational theory of any finite ring is finitely axiomatizable.

1970: McKenzie proved that the equational theory of any finite lattice is finitely axiomatizable.

1973: Kruse and L'vov proved that the equational theory of any finite ring is finitely axiomatizable.

1970: McKenzie proved that the equational theory of any finite lattice is finitely axiomatizable.
1973: Kruse and L'vov proved that the equational theory of any finite ring is finitely axiomatizable.

Where is the proof for the BOOK?

Kirby Baker proved that every finite algebra of finite signature that generates a conguence distributive variety has a finitlely axiomatizable equational theory.

There is more: to any finite algebra satisfying Kirby's hypotheses, you can add finitely many new basic operations. The resulting finite algebra still has a finitely axiomatizable equational theory.

Kirby Baker proved that every finite algebra of finite signature that generates a conguence distributive variety has a finitlely axiomatizable equational theory.

There is more: to any finite algebra satisfying Kirby's hypotheses, you can add finitely many new basic operations. The resulting finite algebra still has a finitely axiomatizable equational theory.

Expandably Finitely Based Finite Algebras

Call a finite algebra of finite signature expandably finitely based provided every algebra obtained from it by adding finitely many additional basic operations has a finitely axiomatizable equational theories.

How about the 2 element algebras? How about the paraprimal algebras? How about some others?

How about the 2 element algebras?

How about the paraprimal algebras?

How about the 2 element algebras?

How about the paraprimal algebras?

How about the 2 element algebras?

How about the paraprimal algebras?

Are there others besides the ones generating a congruence distributive variety?? How about the 2 element algebras?

How about the paraprimal algebras?

Most of the finite basis results, either explicitly or implicitly, use the condition that the variety generated by the finite algebra has a finite residual bound. Bjarni Jónsson speculated in the early 1970's that this condition might be sufficient.

Problem

Prove that any finite algebra of finite signature that supports a Taylor term must have a finitely axiomatizable equational theory.

The Question is Subtle

In 1995 Ralph McKenzie published a proof that there is no algorithm, which given a finite algebra of finite signature, would determine whether it's equational theory is finitely axiomatizable—settling Tarski's Finite Basis Problem.

Finite Algebra Membership Problem

Let \mathcal{V} be the variety generated by the finite algebra \mathbf{A} of finite signature. The Finite Algebra Membership Problem for \mathcal{V} is given a finite algebra \mathbf{B} to determine whether $\mathbf{B} \in \mathcal{V}$.

Is there an algorithm, which given a finite algebra **A** of finite signature will determine whether the finite algebra membership problem for the variety generated by **A** can be settled in polynomial time?

One Last Problem

Do you believe in Volume II?