Inverse-free subreducts of lattice-ordered groups

Nick Galatos University of Denver (joint work with George Metcalfe and Almudena Colacito)

January, 2020

Lattice-ordered groups

A *lattice-ordered group*, or ℓ -group, is an algebra $\mathbf{A} = (A, \land, \lor, \cdot, ^{-1}, 1)$ such that

$$\blacksquare (A, \land, \lor) \text{ is a lattice,}$$

• $(A, \cdot, -1, 1)$ is a group and

multiplication is compatible with the order. (It is order preserving/it distributes over join/it distributes over meet.)

Examples

- $\blacksquare \quad (\mathbb{Z}, min, max, +, -, 0)$
- $\blacksquare \quad (\mathbb{R}, min, max, +, -, 0)$
- $(\mathbb{C}, \lor, \land, +, -, 0)$, either lexicographically or coorinatewise

The order-bijections $\operatorname{Aut}(C, \leq)$ on a chain (C, \leq) . For example $\operatorname{Aut}(\mathbf{n})$, $\operatorname{Aut}(\mathbb{N})$, $\operatorname{Aut}(\mathbb{Z})$, $\operatorname{Aut}(\mathbb{R})$.

Note: special case of a residuated lattice.

Fact (The lattice reducts of) ℓ -groups are distributive. Also, the De Morgan laws hold.

Holland's embedding theorem Every ℓ -group can be embedded in Aut(C), for some chain C.

Lattice-ordered groups

Subvarieties and

decidability **Systems** Derivable rules A decidable system A cut-free system Inverse-free reducts Inverse-free reducts of representable Semilinear tdl-monoids Semilinear tdl-monoids Semilinear TDL-monoids **Derivation systems** Removing inverses (Pre)orders on the free group (Pre)orders on the free group

Subvarieties and decidability

Nick Galatos, Joint Meetings, Denver, January 2020

Theorem (Weinberg) The variety of abelian ℓ -groups is generated by \mathbb{Z} .

The equational theory of abelian ℓ -groups is deciable via linear programing algorithms.

The variety of *representable* ℓ -groups (subdirect products of totally ordered ones) is properly between abelian and the whole variety. It is axiomatizeed by $yx \leq xyx \lor y$ and the decidability of the equational theory remains unknown.

Holland's generation theorem The variety of ℓ -groups is generated by $Aut(\mathbb{R})$ (also by $Aut(\mathbb{Q})$).

Theorem (Holland - McCleary) The equational theory of ℓ -groups is decidable. (Implemented online by P. Jipsen.)

If the equation is false then a finite partial description (a *diagram*) of an infinite counterexample is provided by the algorithm. If it is true, the termination of the diagram search certifies that it is false.

Fact It is enough to decide equations of the form $1 \le g_1 \lor \cdots \lor g_n$, where g_1, \ldots, g_n are group terms.

Subvarieties and decidability Systems Derivable rules A decidable system A cut-free system Inverse-free reducts Inverse-free reducts of representable Semilinear tdl-monoids Semilinear tdl-monoids Semilinear TDL-monoids Derivation systems Removing inverses (Pre)orders on the free group (Pre)orders on the free group

Lattice-ordered groups

Systems

The following implications/quasiequations/inference rules hold in *l*-groups

$$\frac{1 \le s \lor g}{1 \le s \lor gk} \quad (\text{MIX}) \qquad \frac{1 \le s \lor gh}{1 \le s \lor g \lor h} \quad (\text{SPLIT})$$

$$\frac{1 \le s \lor gk}{1 \le s \lor gk} \quad 1 \le s \lor gk \quad s \lor nh \quad (\text{SPLIT})$$

$$\frac{1}{1 \le s \lor ghh^{-1}k}$$
(SIMP)
$$\frac{1}{1 \le s \lor gh \lor nk}$$
(COM

The system $G\ell$ consists of the axioms and rules:

$$\frac{g \text{ gp. valid}}{1 \le s \lor g} (\text{GV}) \quad \frac{1 \le s \lor h \lor h^{-1}}{1 \le s \lor h \lor h^{-1}} (\text{EM})$$

$$\frac{1 \le s \lor gh \quad s \lor h^{-1}k}{1 \le s \lor gk} \quad (\text{CUT}) \quad \frac{1 \le s}{1 \le s \lor t} \quad (\text{EW})$$

Note that (MIX) is an instance of (CUT). Also the other three rules follow from $G\ell$.

Lattice-ordered groups Subvarieties and decidability Systems Derivable rules A decidable system A cut-free system Inverse-free reducts Inverse-free reducts of representable Semilinear tdl-monoids Semilinear tdl-monoids Semilinear TDL-monoids **Derivation systems** Removing inverses (Pre)orders on the free group (Pre)orders on the free group

Derivable rules

For $(\ensuremath{\operatorname{SPLIT}}),$ $(\ensuremath{\operatorname{SIMP}})$ and $(\ensuremath{\operatorname{COM}})$ we have:

$$\frac{s \lor gh}{s \lor h \lor gh} (EW) \quad \frac{1}{s \lor h \lor h^{-1}} (EM) (CUT) \qquad \frac{s \lor gk}{s \lor ghh^{-1}k} (GV) (CUT)$$

$$\frac{\frac{1 \leq s \vee n, h}{1 \leq s \vee gh \vee nh} (\text{EW})}{\frac{1 \leq s \vee gh \vee nh}{1 \leq s \vee gh \vee nkk^{-1}h} (\text{SIMP})} \frac{\frac{1 \leq s \vee gk}{1 \leq s \vee ghh^{-1}k} (\text{SIMP})}{\frac{1 \leq s \vee gh \vee h^{-1}k}{1 \leq s \vee gh \vee h^{-1}k}} (\text{CUT})$$

Lattice-ordered groups Subvarieties and decidability Systems Derivable rules A decidable system

A cut-free system Inverse-free reducts Inverse-free reducts of representable Semilinear tdl-monoids Semilinear tdl-monoids Semilinear TDL-monoids Derivation systems Removing inverses (Pre)orders on the free group (Pre)orders on the free group

A decidable system

Theorem (G. - Metcalfe) The system $G\ell$ provides an axiomatization for ℓ -groups. Also, the following "resolution" rule is admissible.

 $\frac{1 \le s \lor g \quad 1 \le s \lor g^{-1}}{1 \le s}$ (RES)

where g is not group valid.

When exploring (upward) the possible proofs of a given inequality, the choices of the subterms in (CUT) and in (RES) can be restricted to a finite set given by the inequality (inspired by the diagrams in Holland's proof).

This yields decidability and actually the complexity of the resulting algorithm is co-NP complete.

If the equation is true the derivation can be transformed into an equaltional-logic proof.

As a by-product, this provides an alternative proof of Holland's generation theorem without using Holland's embedding theorem.

Lattice-ordered groups Subvarieties and decidability Systems Derivable rules

A decidable system

A cut-free system Inverse-free reducts Inverse-free reducts of representable Semilinear tdl-monoids Semilinear tdl-monoids Semilinear TDL-monoids Derivation systems Removing inverses (Pre)orders on the free group (Pre)orders on the free group

A cut-free system

Theorem (G. - Metcalfe) The following is an alternative derivation system for ℓ -groups. Note that in the system no unexpected terms appear when reading the rules upwards.

$$\frac{1 \le 1}{1 \le 1} (\text{EMP}) \quad \frac{1 \le xx^{-1}}{1 \le xx^{-1}} (\text{ID}) \quad \frac{1 \le hg}{1 \le gh} (\text{CYCLE}) \quad \frac{1 \le s}{1 \le s \lor t} (\text{EW})$$
$$\frac{1 \le s \lor g}{1 \le s \lor h} (\text{MIX}) \quad \frac{1 \le s \lor gk}{1 \le s \lor gh \lor nk} (\text{COM})$$
$$\frac{1 \le s \lor gth}{1 \le s \lor gth} \quad 1 \le s \lor gsh}{1 \le s \lor g(t \land s)h} (\land) \quad \frac{1 \le s \lor gth \lor gsh}{1 \le s \lor g(t \lor s)h} (\lor)$$

Shortcoming Neither system allows for a good duality theory, as provided by residuated frames (**G.** - **Jipsen**).

Lattice-ordered groups Subvarieties and decidability Systems Derivable rules A decidable system

A cut-free system

Inverse-free reducts Inverse-free reducts of representable Semilinear tdl-monoids Semilinear tdl-monoids Semilinear TDL-monoids Derivation systems Removing inverses (Pre)orders on the free group (Pre)orders on the free group

Inverse-free reducts

Fact The inverse-free reducts of ℓ -groups are necessarily distributive as lattices and multiplication distributes over both meet and join; we call such structures *totally distributive* ℓ -monoids.

Theorem (Repnitskii) The inverse-free subreducts of abelian ℓ -groups are a proper subvariety of the *commutative* totally distributive ℓ -monoids. Actually, it is not finitely based.

Theorem (Colacito - G. - Metcalfe) The inverse-free subreducts of ℓ -groups are exactly the totally distributive ℓ -monoids.

Proof-idea If an inverse-free equation fails in ℓ -groups, then it fails in Aut(C) for some chain C. So, the (order-bijections on C in the) two sides of the equation when evaluated at some point in C produce two different values of C.

From this finite diagram extract/define a finite set C' of C (we take an appropriate subset of C and then duplicate elements) and endomorphisms on C' (by truncation and then extension to C') such that the two sides still evaluate at different points.

This yields a failure of the equation in the totally distributive ℓ -monoid $\mathbf{End}(\mathbf{C})$ of the endomorphisms on C'.

Lattice-ordered groups Subvarieties and decidability Systems Derivable rules A decidable system A cut-free system

Inverse-free reducts Inverse-free reducts of representable Semilinear tdl-monoids Semilinear tdl-monoids Semilinear TDL-monoids Derivation systems Removing inverses (Pre)orders on the free group (Pre)orders on the free group

Inverse-free reducts of representable

Proposition (Colacito - G. - Metcalfe) The inverse-free subreducts of representatble ℓ -groups are not the whole variety of semilinear (subdirect product of chains) totally distributive ℓ -monoids.

Proof idea We define the terms

 $F = x_1 x_2 x_3 \wedge x_5 x_4 x_6 \wedge x_9 x_7 x_8, \quad G = x_1 x_4 x_7 \vee x_5 x_2 x_8 \vee x_9 x_6 x_3, \quad F' = x_1 x_3 x_2 \wedge x_5 x_6 x_4 \wedge x_9 x_8 x_7, \quad G' = x_1 x_7 x_4 \vee x_5 x_8 x_2 \vee x_9 x_3 x_6.$

We show that $F \wedge F' \leq G \vee G'$ fails in a *commutative* totally ordered monoid. (Note that in the commutative case F = F' and G = G'.)

We also prove that $F \wedge F' \leq G \vee G'$ holds in all totally ordered groups. This is done by presenting a derivation in the system of **(G. - Metcalfe)** expanded by the *cycle* quasiequation $(1 \leq xy \vee z \Rightarrow 1 \leq yx \vee z)$, which holds in the free representable ℓ -group.

Conjecture The inverse-free subreducts of representatble ℓ -groups do not form a finitely axiomatizable variety (over the semilinear (totally distributive) ℓ -monoids).

We should first axiomatize the variety of semilinear TDL-monoids.

Subvarieties and decidability Systems Derivable rules A decidable system A cut-free system Inverse-free reducts Inverse-free reducts of representable Semilinear tdl-monoids Semilinear tdl-monoids Semilinear TDL-monoids **Derivation systems** Removing inverses (Pre)orders on the free group (Pre)orders on the free group

Lattice-ordered groups

Semilinear tdl-monoids

Theorem (Colacito - G. - Metcalfe) Among totally distributive ℓ -monoids the subvariety of all semilinear ones is axiomatized by the equation (esl)

 $z_1xz_2 \wedge w_1yw_2 \leq z_1yz_2 \vee w_1xw_2.$

Theorem (G. - Horčík) A join-semilattice monoid can be embedded into the order endomorphisms End(C) of a chain C iff it satisfies

 $u \leq h \lor zx \& u \leq h \lor wy \Longrightarrow u \leq h \lor zy \lor wx.$

In the lattice-ordered case this is equivalent to

 $(h \lor zx) \land (h \lor wy) \le h \lor zy \lor wx.$

In the distributive lattice-ordered case this is equivalent to

 $zx \wedge wy \leq zy \vee wx.$

(The theorem also has versions for residuated lattices and for ℓ -groups: Holland's embedding theorem.)

Lattice-ordered groups Subvarieties and decidability Systems Derivable rules A decidable system A cut-free system Inverse-free reducts Inverse-free reducts of representable Semilinear tdl-monoids

Semilinear tdl-monoids Semilinear TDL-monoids Derivation systems Removing inverses (Pre)orders on the free group (Pre)orders on the free group

Semilinear tdl-monoids

(Melier) For an monoid \mathbf{M} , $m \in M$ and subset I, we define

$$\frac{I}{m} = \{(x, y) \in M \times M : xmy \in I\}.$$

Also, we define a binary relation by

$$a \sim_I b$$
 iff $\frac{I}{a} = \frac{I}{b}$ iff for all $z, w \in M$, $zaw \in I$ iff $zbw \in I$.

A semilattice-monoid (aka idempotent semiring) is a structure $\mathbf{M} = (M, \lor, \cdot, 1)$ such that (M, \lor) is a join-semilattice, $(M, \cdot, 1)$ is a monoid and multiplication distributes over join on both sides.

Lemma (Melier) If I is an ideal of a semilattice-monoid, then \sim_I is a congruence. If \mathbf{M} is a lattice and I is \wedge -prime, then \sim_I is compatible with meet.

In this case the quotient M/I is also a (lattice-ordered) semilattice-monoid.

Lattice-ordered groups Subvarieties and decidability Systems Derivable rules A decidable system A cut-free system Inverse-free reducts Inverse-free reducts of representable Semilinear tdl-monoids Semilinear tdl-monoids Semilinear TDL-monoids **Derivation systems** Removing inverses (Pre)orders on the free group

(Pre)orders on the free group

Semilinear TDL-monoids

Lemma (cf. G. - Horčík) The quotient M/I is a chain iff

 $z_1xz_2 \in I$ and $w_1yw_2 \in I$ implies $z_1yz_2 \in I$ or $w_1xw_2 \in I$.

Lemma A semilattice monoid is semilinear iff it satisfies the implication (sl)

 $u \leq h \lor z_1 x z_2 \& u \leq h \lor w_1 y w_2 \Longrightarrow u \leq h \lor z_1 y z_2 \lor w_2 x w_2$

Proof idea

1. relatively maximal ideals produce linear quotients (and are $\wedge\mbox{-prime}$ in the lattice case) and that

2. we have enough relatively maximal to separate points.

Lemma If a lattice-ordered semiilattice-monoid is distributive, then (sl) is equivalent to the equation (esl): $z_1xz_2 \wedge w_1yw_2 \leq z_1yz_2 \vee w_1xw_2$.

Note that (esl) implies $ee(yx) \land yxe \leq ex(yx) \lor yee$, namely $yx \leq xyx \lor y$, the equation that axiomatizes representable ℓ -groups.

Lattice-ordered groups Subvarieties and decidability Systems Derivable rules A decidable system A cut-free system Inverse-free reducts Inverse-free reducts of representable Semilinear tdl-monoids Semilinear tdl-monoids Semilinear TDL-monoids **Derivation systems** Removing inverses (Pre)orders on the free group

(Pre)orders on the free group

Derivation systems

Starting from the system **DRL** used for distributive residuated lattices in **(G. - Jipsen)**, which does not contain transitivity/cut and is decidable, we can obtain a good derivation system **TDLM** for totally-distributive semilattice-monoids:

The system **DRL** supports the addition of equations such as distributivity of multiplication over meet: $xz \wedge xw \leq x(z \wedge w)$.

This can then be replaced by its linearized version $xz \wedge yw \leq xw \lor yz$ and then by a quasiequation $xw \leq c \& yz \leq c \Longrightarrow xz \land yw \leq c$. With this modification we still have completeness of the system without needing transitivity.

We can do the same for the semilinear case by transforming the equation (esl) $z_1xz_2 \wedge w_1yw_2 \leq z_1yz_2 \vee w_1xw_2$.

Also, we can also transform the commutativity equation xy = yx.

Lattice-ordered groups Subvarieties and decidability Systems Derivable rules A decidable system A cut-free system Inverse-free reducts Inverse-free reducts of representable Semilinear tdl-monoids Semilinear tdl-monoids

Derivation systems

Removing inverses (Pre)orders on the free group (Pre)orders on the free group

Removing inverses

Fact In abelian ℓ -groups every equation is equivalent to an inverse-free one. So, it is enough to decide the validity of inverse-free equations. Question Is it enough to decide inverse-free equations in ℓ -groups? Theorem (Colacito - G. - Metcalfe) The free ℓ -group satisfies:

 $u \le h \lor cg^{-1}d \Leftrightarrow (\forall x)(gxu \le gxh \lor gxcx \lor d).$

There is a lose analogy with the *density rule* in proof-theory.

Corollary Every equation in ℓ -groups is equivalent to one of the form $r_0 \leq r_1 \vee \cdots \vee r_n$, where the r_i 's monoid terms.

Therefore to decide (inverse-including) equations in ℓ -groups, we only need to be able to decide (inverse-free) equations in TDL-monoids.

Hybrid system: Given an ℓ -group equation we apply (upward) instances of the density rule until we obtain an inverse-free equation. Then we continue in the system **TDLM**.

We can use *residuated frames* for totally distributive ℓ -monoids.

We can recover the cut-free system of (G.-Metcalfe).

Lattice-ordered groups Subvarieties and decidability Systems Derivable rules A decidable system A cut-free system Inverse-free reducts Inverse-free reducts of representable Semilinear tdl-monoids Semilinear tdl-monoids Semilinear TDL-monoids **Derivation systems** Removing inverses (Pre)orders on the free group

(Pre)orders on the free

group

(Pre)orders on the free group

Fact The lattice order of any ℓ -group is the intersection of all of its total-order extensions that are *right orders* (orders compatible with right multiplication).

Fact Every total right order on a group is determined by its positive (and/or negative) cone.

Fact Total orders on the *free abelian group* on two generators are in bijective correspondence with lines through the origin with irrational slope together with (counted twice) lines through the origin with rational slope.

Lattice-ordered groups Subvarieties and decidability Systems Derivable rules A decidable system A cut-free system Inverse-free reducts Inverse-free reducts of representable Semilinear tdl-monoids Semilinear tdl-monoids Semilinear TDL-monoids **Derivation systems** Removing inverses (Pre)orders on the free group (Pre)orders on the free group

(Pre)orders on the free group

Theorem (Colacito - G. - Metcalfe) Let $\Sigma \cup \{t_1, \ldots, t_n\}$ be a set of group terms over the set X. The following are equivalent

 There is no total right preorder of the *free group* over X that makes the normal closure of Σ positive and {t₁,..., t_n} strictly negative.
 Σ ⊨_{Aut(Q)} e ≤ t₁ ∨ · · · ∨ t_n

Corollary The following are equivalent

1. $\{t_1, \ldots, t_n\}$ does not extend to the positive cone of a right order on the free group over X.

2. $\models_{LG} 1 \le t_1 \lor \cdots \lor t_n$

Theorem (Colacito - G. - Metcalfe) The following are equivalent 1. $\{s_1 < t_1, \ldots, s_n < t_n\}$ does not extend to a right order on the *free* group over X. 2. $\models_{TDLM} y_1 s_1 \land \cdots \land y_n s_n \leq y_1 t_1 \lor \cdots \lor y_n t_n.$

3. $\{s_1 < t_1, \ldots, s_n < t_n\}$ does not extend to a right order on the free monoid over X.

The variables y_1, y_2, \ldots, y_n are not contained in the s_i 's and t_i 's.

Lattice-ordered groups Subvarieties and decidability Systems Derivable rules A decidable system A cut-free system Inverse-free reducts Inverse-free reducts of representable Semilinear tdl-monoids Semilinear tdl-monoids Semilinear TDL-monoids **Derivation systems Removing inverses** (Pre)orders on the free group (Pre)orders on the free group