Varieties of Semilattice Sums

Cliff Bergman Joint work with T. Penza and A. Romanowska

American Mathematical Society January 15, 2020

Let $\mathcal V$ and $\mathcal W$ be quasivarieties. The Maltsev product of $\mathcal V$ and $\mathcal W$ is the class

$$\mathcal{V} \circ \mathcal{W} = \{ \mathbf{A} : (\exists \varrho \in \mathsf{Con}(\mathbf{A})) \mathbf{A} / \varrho \in \mathcal{W} \text{ and} \\ (\forall \mathbf{a} \in \mathbf{A}) \mathbf{a} / \varrho \in \mathsf{Sub}(\mathbf{A}) \implies \mathbf{a} / \varrho \in \mathcal{V} \}.$$

Under modest conditions, $\mathcal{V} \circ \mathcal{W}$ will be a quasivariety:

- Finite similarity type or
- $\bullet \mathcal{W}$ is idempotent.

If \mathcal{V} and \mathcal{W} are varieties, will $\mathcal{V} \circ \mathcal{W}$ ever be a variety?

Never. Well, hardly ever.

Assume our similarity type has -no nullary operations and -at least one nonunary operation. Then there is a unique variety S that is term-equivalent to the variety of semilattices.

A member of $\mathcal{V} \circ \mathcal{S}$ is called a *semilattice sum of* \mathcal{V} *-algebras.*

Note that since S is idempotent, $V \circ S$ is a quasivariety. Also, $\mathbf{A} \in V \circ S$ implies every congruence class is a subalgebra.

Assume our similarity type consists of a single binary operation symbol.

 $\varrho = |01|23|45|6|$ So $\mathbf{A} \in \mathcal{S} \circ \mathcal{S}$. But $3 \cdot 5 \neq 5 \cdot 3$ so $\mathbf{A} \notin \mathcal{S}$. An identity is *regular* if it has the same variables on each side of the equality

regular

irregular

 $\begin{array}{ll} x \cdot x \approx x & x \cdot y \approx x \\ x \cdot y \approx y \cdot x & y \cdot (x \cdot y) \approx y \cdot (z \cdot y) \\ x \cdot (y \cdot z) \approx (x \cdot y) \cdot z & p(x, y, y) \approx x \\ x \wedge (y \vee z) \approx (x \wedge y) \vee (x \wedge z) & x \wedge (x \vee y) \approx x \end{array}$

An identity of the form $t(x, y) \approx x$ is called *strongly irregular*.

Theorem: $Id(S) = \{all regular identities\}.$

Let σ be an identity

 $f(y_1, \ldots, y_n) \approx g(y_1, \ldots, y_n).$ Define σ^* to be the *set* of all identities of the form

$$f(r_1(\mathbf{x}),\ldots,r_n(\mathbf{x}))\approx g(r_1(\mathbf{x}),\ldots,r_n(\mathbf{x}))$$

in which m > 0, $\mathbf{x} = x_1, \ldots, x_m$, and each r_i is a term on *exactly* m variables.

Straightforward to check:

$$\mathcal{V}\vDash\sigma\implies\mathcal{V}\circ\mathcal{S}\vDash\sigma^*.$$

Corollary

 $\mathcal V$ a variety with equational base Σ . Let $\Sigma^* = \bigcup_{\sigma \in \Sigma} \sigma^*$ and

 $\mathcal{V}^* = \mathsf{Mod}(\Sigma^*).$ Then $\mathcal{V} \circ \mathcal{S} \subseteq \mathcal{V}^*.$

Main Theorem

Let \mathcal{V} be any variety.

•
$$\mathbf{H}(\mathcal{V} \circ \mathcal{S}) = \mathcal{V}^*$$

2 If \mathcal{V} is strongly irregular then $\mathcal{V} \circ \mathcal{S} = \mathcal{V}^*$.

What about regular varieties?

Let C be the variety of commutative binars. Consider

 $q: (zx \approx x \& zy \approx y \& xz \approx yz \rightarrow xy \approx yx).$ Easy to check: $\mathcal{C} \circ \mathcal{S} \vDash q.$

 $\mathbf{A} \in \mathcal{S} \circ \mathcal{S} \subseteq \mathcal{C} \circ \mathcal{S}.$ So $\mathbf{A} \vDash q$.

Let $\theta = Cg(2, 4) = |024|1|3|5|6|$. Then $\mathbf{A}/\theta \nvDash q$ with $x = 3/\theta$, $y = 5/\theta$, $z = 6/\theta$. Thus $\mathbf{A}/\theta \notin C \circ S$.

So $\mathcal{C} \circ \mathcal{S}$ not closed under homomorphic images

Presumably there is nothing special about commutativity.

On the other hand, let A be the variety of all algebras. (Note: A is regular) Then $A \circ S = A$, which is a variety.

Conjecture: Let \mathcal{V} be a proper, regular variety. Then $\mathcal{V} \circ \mathcal{S}$ is not closed under homs.

For
$$H(\mathcal{V} \circ \mathcal{S}) = \mathcal{V}^*$$

Let
$$\mathcal{W}$$
 be regular, $\mathbf{F} = \mathbf{F}_{\mathcal{W}}(X)$, $a \in F$.
 $a = s^{\mathbf{F}}(x_1, \dots, x_n)$ for some term s and $x_1, \dots, x_n \in X$.
Regularity $\implies var(a) = \{x_1, \dots, x_n\}$ is independent of s .

var:
$$\mathbf{F} \to \operatorname{Sb}_{\omega}(X) - \{\varnothing\} \cong \mathbf{F}_{\mathcal{S}}(X)$$

is a surjective homomorphism
 $\therefore \quad \varrho = \operatorname{ker}(\operatorname{var}).$

Let \mathcal{V} be arbitrary, $\mathcal{W} = \mathcal{V}^*$. Then \mathcal{W} is regular. From above, ρ on $\mathbf{F}_{\mathcal{W}}(X)$ is known.

Identities of $\mathcal{V}^* \implies a/\varrho \in \mathcal{V}$, for all $a \in F$ $\therefore \mathbf{F}_{\mathcal{W}}(X) \in \mathcal{V} \circ S$ $\therefore \mathbf{H}(\mathcal{V} \circ S) = \mathcal{V}^*$

Remark: With a suitable change to the definition of σ^* , the result holds with S replaced by an arbitrary idempotent variety.

For $\mathcal{V} \vDash t(x, y) \approx x \implies \mathcal{V} \circ \mathcal{S} = \mathcal{V}^*$

Assume $\mathcal{V} \vDash t(x, y) \approx x$. $\mathbf{F} = \mathbf{F}_{\mathcal{V}^*}(X)$. So $\mathbf{F} \in \mathcal{V} \circ S$. Let $\theta \in \text{Con}(\mathbf{F})$. Want $\mathbf{F}/\theta \in \mathcal{V} \circ S$. Equivalently, need $\mathbf{a} \in \mathbf{F} \implies \mathbf{a}/(\theta \lor \varrho) \in \mathcal{V}$

strong irregularity $\implies \theta \lor \varrho = \theta \circ \varrho \circ \theta$. Therefore each $(\theta \lor \varrho)$ -class satisfies $t(x, y) \approx x$. $\therefore \operatorname{Id}(\mathcal{V})^*$ imply each $(\theta \lor \varrho)$ -class lies in \mathcal{V} .

The End