Math 3130-Assignment 13

Due April 22, 2016
(109) [1, Section 6.1] Give 3 vectors of length 1 in \mathbb{R}^{3} that are orthogonal to $\mathbf{u}=\left[\begin{array}{c}4 \\ -1 \\ 2\end{array}\right]$.

Solution:

First we find 3 vectors orthogonal to \mathbf{u} :

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
4 \\
0
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{c}
1 \\
0 \\
-2
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{l}
0 \\
2 \\
1
\end{array}\right] .
$$

Then we normalize these vectors so that the length of each vector is 1 :

$$
\mathbf{w}_{1}=\frac{1}{\left\|\mathbf{v}_{1}\right\|} \mathbf{v}_{1}=\frac{1}{\sqrt{17}}\left[\begin{array}{l}
1 \\
4 \\
0
\end{array}\right], \quad \mathbf{w}_{2}=\frac{1}{\sqrt{5}}\left[\begin{array}{c}
1 \\
0 \\
-2
\end{array}\right], \quad \mathbf{w}_{3}=\frac{1}{\sqrt{5}}\left[\begin{array}{l}
0 \\
2 \\
1
\end{array}\right] .
$$

(110) [1, Section 6.2] Which of the following are orthonormal sets?

$$
A=\left\{\left[\begin{array}{c}
0.6 \\
0.8
\end{array}\right],\left[\begin{array}{c}
0.8 \\
-0.6
\end{array}\right]\right\}, \quad B=\left\{\frac{1}{3}\left[\begin{array}{c}
1 \\
-2 \\
2
\end{array}\right], \frac{1}{\sqrt{18}}\left[\begin{array}{c}
4 \\
1 \\
-1
\end{array}\right]\right\}
$$

Solution:

Both sets are orthogonal since the dot product of distinct vectors is 0 . In addition each vector has length 1 . Thus A and B both are orthonormal.
(111) $\left[1\right.$, Section 6.2] Let W be the subspace of \mathbb{R}^{3} with orthormal basis $B=\left(\frac{1}{3}\left[\begin{array}{c}2 \\ -1 \\ 2\end{array}\right], \frac{1}{\sqrt{5}}\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]\right)$. Compute the coordinates $[\mathbf{x}]_{B}$ for $\mathbf{x}=\left[\begin{array}{l}7 \\ 4 \\ 4\end{array}\right]$.

Solution:

Let $\left(\mathbf{b}_{1}, \mathbf{b}_{2}\right)=B$. Then $\mathbf{x}=c_{1} \mathbf{b}_{1}+c_{2} \mathbf{b}_{2}$ with $c_{i}=\frac{\mathbf{x} \cdot \mathbf{b}_{i}}{\mathbf{b}_{i} \cdot \mathbf{b}_{i}}$. We obtain $c_{1}=6$, $c_{2}=\frac{15}{\sqrt{5}}=3 \sqrt{5}$, and $[\mathbf{x}]_{B}=\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{c}6 \\ 3 \sqrt{5}\end{array}\right]$.
(112) $\left[1,14\right.$, Section 6.2] Write $\mathbf{x}=\left[\begin{array}{l}2 \\ 6\end{array}\right]$ as a sum of a vector in $\operatorname{Span}\{\mathbf{u}\}$ and a vector in $\operatorname{Span}\{\mathbf{u}\}^{\perp}$ for $\mathbf{u}=\left[\begin{array}{l}7 \\ 1\end{array}\right]$.

Solution:

$$
\begin{aligned}
\operatorname{proj}_{\mathbf{u}} \mathbf{x} & =\frac{\mathbf{x} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}=\frac{2}{5}\left[\begin{array}{l}
7 \\
1
\end{array}\right] . \\
\mathbf{x} & =\underbrace{\operatorname{proj}_{\mathbf{u}} \mathbf{x}}_{\in \operatorname{Span}\{\mathbf{u}\}}+\underbrace{\left(\mathbf{x}-\operatorname{proj}_{\mathbf{u}} \mathbf{x}\right)}_{\perp \operatorname{Span}\{\mathbf{u}\}}=\frac{2}{5}\left[\begin{array}{l}
7 \\
1
\end{array}\right]+\frac{4}{5}\left[\begin{array}{c}
-1 \\
7
\end{array}\right] .
\end{aligned}
$$

(113) $\left[1,6\right.$, Section 6.3] Check that $\mathbf{u}_{1}=\left[\begin{array}{c}-4 \\ -1 \\ 1\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$ form an orthogonal set and compute the orthogonal projection of $\mathbf{x}=\left[\begin{array}{l}6 \\ 4 \\ 1\end{array}\right]$ onto $\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$.
What is the distance from \mathbf{x} to $\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$?

Solution:

The set is orthogonal since $\mathbf{u}_{1} \cdot \mathbf{u}_{2}=0$. The projection is given by

$$
\operatorname{proj}_{S p a n\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}} \mathbf{x}=\frac{\mathbf{x} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}+\frac{\mathbf{x} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}} \mathbf{u}_{2}=\frac{-27}{18}\left[\begin{array}{c}
-4 \\
-1 \\
1
\end{array}\right]+\frac{5}{2}\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
6 \\
4 \\
1
\end{array}\right]=\mathbf{x} .
$$

The distance is

$$
\left\|\mathbf{x}-\operatorname{proj}_{\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}} \mathbf{x}\right\|=\|\mathbf{0}\|=0
$$

The fact that \mathbf{x} is equal to its projection means that \mathbf{x} is in $\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$. Thus the distance is 0 .
(114) $\left[1,8\right.$, Section 6.3] Find the closest point to \mathbf{x} in $\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$:

$$
\mathbf{x}=\left[\begin{array}{c}
-1 \\
4 \\
3
\end{array}\right], \mathbf{u}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}
-1 \\
3 \\
-2
\end{array}\right]
$$

Solution:

The closest point to \mathbf{x} is

$$
\operatorname{proj}_{\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}} \mathbf{x}=\frac{\mathbf{x} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}+\frac{\mathbf{x} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}} \mathbf{u}_{2}=\frac{6}{3}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+\frac{7}{14}\left[\begin{array}{c}
-1 \\
3 \\
-2
\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}
3 \\
7 \\
2
\end{array}\right] .
$$

(115) [1, 2, Section 6.4] Use the Gram-Schmidt algorithm to find orthonormal bases for the following subspaces:

$$
U=\operatorname{Span}\left\{\left[\begin{array}{l}
0 \\
2 \\
1
\end{array}\right],\left[\begin{array}{c}
5 \\
6 \\
-7
\end{array}\right]\right\}, \quad W=\operatorname{Span}\left\{\left[\begin{array}{c}
2 \\
-1 \\
-2
\end{array}\right],\left[\begin{array}{c}
-4 \\
2 \\
4
\end{array}\right]\right\}
$$

Solution:

Subspace U : Gram-Schmidt produces an orthogonal set:

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
0 \\
2 \\
1
\end{array}\right], \quad \mathbf{v}_{2}=\mathbf{x}_{2}-\frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}=\left[\begin{array}{c}
5 \\
6 \\
-7
\end{array}\right]-\frac{5}{5}\left[\begin{array}{l}
0 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{c}
5 \\
4 \\
-8
\end{array}\right]
$$

Normalization produces an orthonormal basis

$$
\left(\frac{1}{\sqrt{5}}\left[\begin{array}{l}
0 \\
2 \\
1
\end{array}\right], \frac{1}{\sqrt{105}}\left[\begin{array}{c}
5 \\
4 \\
-8
\end{array}\right]\right)
$$

Subspace W : Gram-Schmidt produces an orthogonal set:

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
2 \\
-1 \\
-2
\end{array}\right], \quad \mathbf{v}_{2}=\mathbf{x}_{2}-\frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}=\left[\begin{array}{c}
-4 \\
2 \\
4
\end{array}\right]-\frac{-18}{9}\left[\begin{array}{c}
2 \\
-1 \\
-2
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

We obtain $\mathbf{0}$ because the input was not linearly independent. We remove the zero vector and normalize to obtain an orthonormal basis

$$
\left(\frac{1}{3}\left[\begin{array}{c}
2 \\
-1 \\
-2
\end{array}\right]\right)
$$

(116) [1, Section 6.4] Use the Gram-Schmidt process to transform the vectors in an orthonormal set.

$$
\mathbf{x}_{1}=\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{c}
-1 \\
1 \\
3 \\
-3
\end{array}\right], \mathbf{x}_{3}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]
$$

Solution:

$$
\begin{aligned}
& \mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right], \quad \mathbf{v}_{2}=\mathbf{x}_{2}-\frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}=\left[\begin{array}{c}
-1 \\
1 \\
3 \\
-3
\end{array}\right]-\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
-2 \\
2 \\
2 \\
-2
\end{array}\right], \\
& \mathbf{v}_{3}=\mathbf{x}_{3}-\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}-\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]-\frac{1}{4}\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right]-\frac{-2}{16}\left[\begin{array}{c}
-2 \\
2 \\
2 \\
-2
\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

Normalization yields an orthonormal basis

$$
\left(\frac{1}{2}\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right], \frac{1}{2}\left[\begin{array}{c}
-1 \\
1 \\
1 \\
-1
\end{array}\right], \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]\right)
$$

(117) [1, Section 6.2-6.4] True or false. Explain your answers.
(a) Every orthogonal set is also orthonormal.
(b) Not every orthonormal set in \mathbb{R}^{n} is linearly independent.
(c) For each \mathbf{x} and each subspace W, the vector $\mathbf{x}-\operatorname{proj}_{W}(\mathbf{x})$ is orthogonal to W.
(d) If a vector is both in a subspace W and in W^{\perp}, then it must be the zero vector.
(e) Multiplying the vectors in an orthogonal basis by non-zero scalars yields again an orthogonal basis.

Solution:

(a) False. The set $\left(\left[\begin{array}{l}2 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 2\end{array}\right]\right)$ is orthogonal but not orthonormal.
(b) False. Every orthonormal set is an orthogonal set without the zero vector. Thus it is linearly independent by Theorem 6.4.
(c) True by Theorem 6.8.
(d) True. If \mathbf{x} is in W and W^{\perp}, then $\mathbf{x} \cdot \mathbf{x}=0$ and thus $\mathbf{x}=\mathbf{0}$.
(e) True since the new set is also orthogonal and spans the same vector space.

References

[1] David C. Lay. Linear Algebra and Its Applications. Addison-Wesley, 4th edition, 2012.

