Math 3130-Assignment 13

Due April 22, 2016

(109) [1, Section 6.1] Give 3 vectors of length 1 in \mathbb{R}^{3} that are orthogonal to $\mathbf{u}=\left[\begin{array}{c}4 \\ -1 \\ 2\end{array}\right]$.
(110) [1, Section 6.2] Which of the following are orthonormal sets?

$$
A=\left\{\left[\begin{array}{c}
0.6 \\
0.8
\end{array}\right],\left[\begin{array}{c}
0.8 \\
-0.6
\end{array}\right]\right\}, \quad B=\left\{\frac{1}{3}\left[\begin{array}{c}
1 \\
-2 \\
2
\end{array}\right], \frac{1}{\sqrt{18}}\left[\begin{array}{c}
4 \\
1 \\
-1
\end{array}\right]\right\}
$$

(111) $\left[1\right.$, Section 6.2] Let W be the subspace of \mathbb{R}^{3} with orthormal basis $B=\left(\frac{1}{3}\left[\begin{array}{c}2 \\ -1 \\ 2\end{array}\right], \frac{1}{\sqrt{5}}\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]\right)$.

Compute the coordinates $[\mathbf{x}]_{B}$ for $\mathbf{x}=\left[\begin{array}{l}7 \\ 4 \\ 4\end{array}\right]$.
(112) $\left[1,14\right.$, Section 6.2] Write $\mathbf{x}=\left[\begin{array}{l}2 \\ 6\end{array}\right]$ as a sum of a vector in $\operatorname{Span}\{\mathbf{u}\}$ and a vector in $\operatorname{Span}\{\mathbf{u}\}^{\perp}$ for $\mathbf{u}=\left[\begin{array}{l}7 \\ 1\end{array}\right]$.
(113) $\left[1,6\right.$, Section 6.3] Check that $\mathbf{u}_{1}=\left[\begin{array}{c}-4 \\ -1 \\ 1\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$ form an orthogonal set and compute the orthogonal projection of $\mathbf{x}=\left[\begin{array}{l}6 \\ 4 \\ 1\end{array}\right]$ onto $\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$.
What is the distance from \mathbf{x} to $\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$?
(114) $\left[1,8\right.$, Section 6.3] Find the closest point to \mathbf{x} in $\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$:

$$
\mathbf{x}=\left[\begin{array}{c}
-1 \\
4 \\
3
\end{array}\right], \mathbf{u}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}
-1 \\
3 \\
-2
\end{array}\right]
$$

(115) [1, 2, Section 6.4] Use the Gram-Schmidt algorithm to find orthonormal bases for the following subspaces:

$$
U=\operatorname{Span}\left\{\left[\begin{array}{l}
0 \\
2 \\
1
\end{array}\right],\left[\begin{array}{c}
5 \\
6 \\
-7
\end{array}\right]\right\}, \quad W=\operatorname{Span}\left\{\left[\begin{array}{c}
2 \\
-1 \\
-2
\end{array}\right],\left[\begin{array}{c}
-4 \\
2 \\
4
\end{array}\right]\right\}
$$

(116) [1, Section 6.4] Use the Gram-Schmidt process to transform the vectors in an orthonormal set.

$$
\mathbf{x}_{1}=\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{c}
-1 \\
1 \\
3 \\
-3
\end{array}\right], \mathbf{x}_{3}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]
$$

(117) [1, Section 6.2-6.4] True or false. Explain your answers.
(a) Every orthogonal set is also orthonormal.
(b) Not every orthonormal set in \mathbb{R}^{n} is linearly independent.
(c) For each \mathbf{x} and each subspace W, the vector $\mathbf{x}-\operatorname{proj}_{W}(\mathbf{x})$ is orthogonal to W.
(d) If a vector is both in a subspace W and in W^{\perp}, then it must be the zero vector.
(e) Multiplying the vectors in an orthogonal basis by non-zero scalars yields again an orthogonal basis.

References

[1] David C. Lay. Linear Algebra and Its Applications. Addison-Wesley, 4th edition, 2012.

