Math 3130-Assignment 12

Due April 15, 2016
(100) $\left[1\right.$, Section 6.1] Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$. Show that $(\mathbf{u}+\mathbf{v}) \cdot \mathbf{w}=\mathbf{u} \cdot \mathbf{w}+\mathbf{v} \cdot \mathbf{w}$.

Solution:

$$
\begin{aligned}
(\mathbf{u}+\mathbf{v}) \cdot \mathbf{w} & \left.=\left(\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]+\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right]\right) \cdot\left[\begin{array}{c}
w_{1} \\
\vdots \\
w_{n}
\end{array}\right]=\left[\begin{array}{c}
u_{1}+v_{1} \\
\vdots \\
u_{n}+v_{n}
\end{array}\right] \cdot\left[\begin{array}{c}
w_{1} \\
\vdots \\
w_{n}
\end{array}\right] \\
& =\left(u_{1}+v_{1}\right) w_{1}+\cdots+\left(u_{n}+v_{n}\right) w_{n} \\
& =u_{1} w_{1} \cdots+u_{n} w_{n}+v_{1} w_{1}+\cdots v_{n} w_{n} \\
& =\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right] \cdot\left[\begin{array}{c}
w_{1} \\
\vdots \\
w_{n}
\end{array}\right]+\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right] \cdot\left[\begin{array}{c}
w_{1} \\
\vdots \\
w_{n}
\end{array}\right] \\
& =\mathbf{u} \cdot \mathbf{w}+\mathbf{v} \cdot \mathbf{w} .
\end{aligned}
$$

(101) $[1$, Section 6.1$]$ Let $\mathbf{u} \in \mathbb{R}^{n}$. Show that
(a) $\mathbf{u} \cdot \mathbf{u} \geq 0$,
(b) $\mathbf{u} \cdot \mathbf{u}=0$ iff $\mathbf{u}=\mathbf{0}$.

Solution:
(a) (2 points) $\mathbf{u} \cdot \mathbf{u}=u_{1}^{2}+\cdots+u_{n}^{2} \geq 0+\cdots+0=0$
(b) (3 points) (\Leftrightarrow) If $\mathbf{u}=\mathbf{0}$, then clearly $\mathbf{u} \cdot \mathbf{u}=0 .(\Rightarrow)$ Assume $\mathbf{u} \cdot \mathbf{u}=0$. Then $u_{1}^{2}+\cdots+u_{n}^{2}=0$. Since the sum of nonnegative numbers $u_{1}^{2}, \ldots, u_{n}^{2}$ is zero, every summand u_{i}^{2} is 0 . Thus all u_{i} are 0 , and hence $\mathbf{u}=\mathbf{0}$.
(102) [1, Section 6.1] Let $\mathbf{u} \in \mathbb{R}^{n}$. Is

$$
V=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{u} \cdot \mathbf{x}=0\right\}
$$

a subspace of \mathbb{R}^{n} ? Which conditions for a subspace are fulfilled by V ?

Solution:

(1) The zero vector is in V since $\mathbf{u} \cdot \mathbf{0}=0$.
(2) V is closed under addition: Let $\mathbf{x}, \mathbf{y} \in V$. Then $\mathbf{u} \cdot \mathbf{x}=0$ and $\mathbf{u} \cdot \mathbf{y}=0$. Show that $\mathbf{x}+\mathbf{y} \in V$. We have $\mathbf{u} \cdot(\mathbf{x}+\mathbf{y})=\mathbf{u} \cdot \mathbf{x}+\mathbf{u} \cdot \mathbf{y}=0+0=0$. Thus $\mathbf{x}+\mathbf{y} \in V$.
(3) V is closed under scalar multiplication: Let $c \in \mathbb{R}$. Show that $c \mathbf{x} \in V$. We have $\mathbf{u} \cdot(c \mathbf{x})=c(\mathbf{u} \cdot \mathbf{x})=c 0=0$. Thus $c \mathbf{x} \in V$.
(103) [1, Section 5.3 (cf. Section 5.6, Problem 5)] Consider a population of owls feeding on a population of flying squirrels in a wood. In month k, let o_{k} denote the number
of owls and f_{k} the number of flying squirrels. Assume that the populations change every month as follows:

$$
\begin{aligned}
o_{k+1} & =0.3 o_{k}+0.4 f_{k} \\
f_{k+1} & =-0.4 o_{k}+1.3 f_{k}
\end{aligned}
$$

That is, if there would be no squirrels to hunt, only 30% of the owls would survive to the next month; if there were no owls that hunted squirrels, then the squirrel population would grow by factor 1.3 every month.

Let $\mathbf{x}_{k}=\left[\begin{array}{c}o_{k} \\ f_{k}\end{array}\right]$. Express the population change from \mathbf{x}_{k} to \mathbf{x}_{k+1} using a matrix A. Diagonalize A.

Solution:

$$
\mathbf{x}_{k+1}=\underbrace{\left[\begin{array}{cc}
0.3 & 0.4 \\
-0.4 & 1.3
\end{array}\right]}_{A} \mathbf{x}_{k}
$$

We diagonalize A. The characteristic equation is

$$
0=\operatorname{det}(A-\lambda I)=(0.3-\lambda)(1.3-\lambda)+0.4^{2}=\lambda^{2}-1.6 \lambda+0.55
$$

the eigenvalues are $\lambda=\frac{1}{2}\left(1.6 \pm \sqrt{1.6^{2}-4 \cdot 0.55}\right)=0.8 \pm 0.3 \in\{0.5,1.1\}$. We compute a basis for each eigenspace.
$\lambda=0.5: \quad \operatorname{Nul}(A-0.5 I)=\operatorname{Nul}\left[\begin{array}{cc}-0.2 & 0.4 \\ -0.4 & 0.8\end{array}\right]=\operatorname{Nul}\left[\begin{array}{cc}1 & -2 \\ 0 & 0\end{array}\right]=\operatorname{Span}\left\{\left[\begin{array}{l}2 \\ 1\end{array}\right]\right\}$.
$\lambda=1.1: \quad \operatorname{Nul}(A-1.1 I)=\operatorname{Nul}\left[\begin{array}{cc}-0.8 & 0.4 \\ -0.4 & 0.2\end{array}\right]=\operatorname{Nul}\left[\begin{array}{cc}1 & -1 / 2 \\ 0 & 0\end{array}\right]=\operatorname{Span}\left\{\left[\begin{array}{c}1 / 2 \\ 1\end{array}\right]\right\}$.
We write the eigenvectors in a matrix P and compute P^{-1} :

$$
P=\left[\begin{array}{cc}
2 & 1 / 2 \\
1 & 1
\end{array}\right], \quad P^{-1}=\frac{1}{3 / 2}\left[\begin{array}{cc}
1 & -1 / 2 \\
-1 & 2
\end{array}\right]=\frac{1}{3}\left[\begin{array}{cc}
2 & -1 \\
-2 & 4
\end{array}\right] .
$$

We obtain a diagonalization

$$
A=\underbrace{\left[\begin{array}{cc}
2 & 1 / 2 \\
1 & 1
\end{array}\right]}_{P} \underbrace{\left[\begin{array}{cc}
0.5 & 0 \\
0 & 1.1
\end{array}\right]}_{D} \underbrace{\frac{1}{3}\left[\begin{array}{cc}
2 & -1 \\
-2 & 4
\end{array}\right]}_{P^{-1}} .
$$

(104) Continue the previous problem: Let the starting population be $\mathbf{x}_{1}=\left[\begin{array}{c}o_{1} \\ f_{1}\end{array}\right]=\left[\begin{array}{c}20 \\ 100\end{array}\right]$.
(a) Give an explicit formula for the populations in month $k+1$.
(b) Are the populations growing or decreasing over time? By which factor?
(c) What is ratio of owls to squirrels after 12 months? After 24 months? Can you explain why?

Solution:

(a) (2 points)

$$
\begin{aligned}
\mathbf{x}_{k+1}=A^{k} \mathbf{x}_{1}=P D^{k} P^{-1} \mathbf{x}_{1} & =\left[\begin{array}{cc}
2 & 1 / 2 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
0.5^{k} & 0 \\
0 & 1.1^{k}
\end{array}\right] \frac{1}{3}\left[\begin{array}{cc}
2 & -1 \\
-2 & 4
\end{array}\right]\left[\begin{array}{c}
20 \\
100
\end{array}\right] \\
& =\left[\begin{array}{c}
60 \cdot 1.1^{k}-40 \cdot 0.5^{k} \\
120 \cdot 1.1^{k}-20 \cdot 0.5^{k}
\end{array}\right]
\end{aligned}
$$

(b) (2 points) Both populations are growing. For large k, the term 0.5^{k} can be neglected (e.g. for $k \geq 12$ we have $1.1^{k} \geq 3.138$ and $0.5^{k} \leq 0.00025$). We can approximate the populations by

$$
\mathbf{x}_{k+1} \approx\left[\begin{array}{c}
60 \cdot 1.1^{k} \\
120 \cdot 1.1^{k}
\end{array}\right]=1.1^{k}\left[\begin{array}{c}
60 \\
120
\end{array}\right] \quad \text { for large } k
$$

After a large number of months, both populations grow by a factor of 1.1 every month.
(c) (1 point) The populations are $x_{13}=\left[\begin{array}{l}188.3 \\ 376.6\end{array}\right]$ after 12 months and $x_{25}=\left[\begin{array}{c}591.0 \\ 1182.0\end{array}\right]$ after 24 months. After a large number of months, the ratio of owls to squirrels is always about $1: 2$ by the approximation formula for \mathbf{x}_{k+1}.
(105) [1, cf. Section 6.1, Problems 19, 20] Are the following true or false? Why? All vectors are in \mathbb{R}^{n}.
(a) $\mathbf{v} \cdot \mathbf{v}=\|\mathbf{v}\|^{2}$.
(b) For any scalar $\mathrm{c}, \mathbf{u} \cdot(c \mathbf{v})=c(\mathbf{u} \cdot \mathbf{v})$.
(c) For a square matrix A, vectors in $\operatorname{Col} A$ are orthogonal to vectors in $\operatorname{Nul} A$.
(d) If \mathbf{x} is orthogonal to every vector in $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$, then \mathbf{x} is also orthogonal to every vector in $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$.
(e) If $\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}=\|\mathbf{u}+\mathbf{v}\|^{2}$, then \mathbf{u} and \mathbf{v} are orthogonal.

Solution:

(a) True since $\mathbf{v} \cdot \mathbf{v}=v_{1}^{2}+\cdots+v_{n}^{2}=\|\mathbf{v}\|^{2}$.
(b) True since $\mathbf{u} \cdot(c \mathbf{v})=u_{1} c v_{1}+\cdots+u_{n} c v_{n}=c u_{1} v_{1}+\cdots+c u_{n} v_{n}=c(\mathbf{u} \cdot \mathbf{v})$.
(c) False. The correct statement is: For a square matrix A, vectors in Row A are orthogonal to vectors in $\operatorname{Nul} A$.
(d) True by the yellow box after Theorem 6.2.
(e) True by the Pythagorean Theorem (6.2).
(106) $\left[1\right.$, Section 6.1] Let $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}5 \\ -1 \\ -1\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{l}2 \\ 0 \\ 3\end{array}\right]$.
(a) Compute the distance between \mathbf{u}_{1} and \mathbf{u}_{2} as well as between \mathbf{u}_{2} and \mathbf{u}_{3}.
(b) Compute the angle (in degrees) between \mathbf{u}_{1} and \mathbf{u}_{2} as well as between \mathbf{u}_{2} and \mathbf{u}_{3}.

Solution:

(a) $\operatorname{dist}\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right)=\left\|\mathbf{u}_{1}-\mathbf{u}_{2}\right\|=\left\|\left[\begin{array}{c}-4 \\ 3 \\ 4\end{array}\right]\right\|=\sqrt{4^{2}+3^{2}+4^{2}}=\sqrt{41}$.

$$
\operatorname{dist}\left(\mathbf{u}_{2}, \mathbf{u}_{3}\right)=\left\|\mathbf{u}_{2}-\mathbf{u}_{3}\right\|=\left\|\left[\begin{array}{c}
3 \\
-1 \\
-4
\end{array}\right]\right\|=\sqrt{3^{2}+1^{2}+4^{2}}=\sqrt{26}
$$

(b) $\alpha\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right)=\arccos \frac{\mathbf{u}_{1} \cdot \mathbf{u}_{2}}{\left\|\mathbf{u}_{1}\right\| \cdot\left\|\mathbf{u}_{2}\right\|}=\arccos 0=90^{\circ}$
$\alpha\left(\mathbf{u}_{2}, \mathbf{u}_{3}\right)=\arccos \frac{\mathbf{u}_{2} \cdot \mathbf{u}_{3}}{\left\|\mathbf{u}_{2}\right\| \cdot\left\|\mathbf{u}_{3}\right\|}=\arccos \frac{7}{\sqrt{27} \sqrt{13}} \approx 68.06^{\circ}$
(107) $\left[1\right.$, Section 6.2] Let $\mathbf{u}_{1}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}1 \\ 3 \\ -3\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{c}6 \\ -1 \\ 1\end{array}\right]$.
(a) Verify that $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is an orthogonal set.
(b) Write every unit vector $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3} \in \mathbb{R}^{3}$ as linear combination $c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+c_{3} \mathbf{u}_{3}$.

Solution:

(a) (1 point) $\mathbf{u}_{1} \cdot \mathbf{u}_{2}=0, \mathbf{u}_{1} \cdot \mathbf{u}_{3}=0, \mathbf{u}_{2} \cdot \mathbf{u}_{3}=0$.
(b) (4 points)

$$
\begin{aligned}
& \mathbf{e}_{1}=\frac{\mathbf{e}_{1} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}+\frac{\mathbf{e}_{1} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}} \mathbf{u}_{2}+\frac{\mathbf{e}_{1} \cdot \mathbf{u}_{3}}{\mathbf{u}_{3} \cdot \mathbf{u}_{3}} \mathbf{u}_{3}=\frac{0}{2} \mathbf{u}_{1}+\frac{1}{19} \mathbf{u}_{2}+\frac{6}{38} \mathbf{u}_{3}, \\
& \mathbf{e}_{2}=\frac{\mathbf{e}_{2} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}+\frac{\mathbf{e}_{2} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}} \mathbf{u}_{2}+\frac{\mathbf{e}_{2} \cdot \mathbf{u}_{3}}{\mathbf{u}_{3} \cdot \mathbf{u}_{3}} \mathbf{u}_{3}=\frac{1}{2} \mathbf{u}_{1}+\frac{3}{19} \mathbf{u}_{2}+\frac{-1}{38} \mathbf{u}_{3}, \\
& \mathbf{e}_{3}=\frac{\mathbf{e}_{3} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}+\frac{\mathbf{e}_{3} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}} \mathbf{u}_{2}+\frac{\mathbf{e}_{3} \cdot \mathbf{u}_{3}}{\mathbf{u}_{3} \cdot \mathbf{u}_{3}} \mathbf{u}_{3}=\frac{1}{2} \mathbf{u}_{1}+\frac{-3}{19} \mathbf{u}_{2}+\frac{1}{38} \mathbf{u}_{3} .
\end{aligned}
$$

(108) $\left[1\right.$, Section 6.1] Let $V=\operatorname{Span}\left\{\left[\begin{array}{c}1 \\ 6 \\ -1\end{array}\right],\left[\begin{array}{c}-3 \\ 1 \\ 3\end{array}\right]\right\}$ be a subspace of \mathbb{R}^{3}. Compute the orthogonal complement of V.

Solution:

Since V is the row space of the matrix $A=\left[\begin{array}{ccc}1 & 6 & -1 \\ -3 & 1 & 3\end{array}\right]$, the orthogonal complement V^{\perp} is given by

$$
V^{\perp}=(\operatorname{Row} A)^{\perp}=\operatorname{Nul} A=\operatorname{Nul}\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 0
\end{array}\right]=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right\}
$$

References

[1] David C. Lay. Linear Algebra and Its Applications. Addison-Wesley, 4th edition, 2012.

