Math 3130-Assignment 12

Due April 15, 2016
(100) $\left[1\right.$, Section 6.1] Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$. Show that $(\mathbf{u}+\mathbf{v}) \cdot \mathbf{w}=\mathbf{u} \cdot \mathbf{w}+\mathbf{v} \cdot \mathbf{w}$.
(101) $\left[1\right.$, Section 6.1] Let $\mathbf{u} \in \mathbb{R}^{n}$. Show that
(a) $\mathbf{u} \cdot \mathbf{u} \geq 0$,
(b) $\mathbf{u} \cdot \mathbf{u}=0$ iff $\mathbf{u}=\mathbf{0}$.
(102) $\left[1\right.$, Section 6.1] Let $\mathbf{u} \in \mathbb{R}^{n}$. Is

$$
V=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{u} \cdot \mathbf{x}=0\right\}
$$

a subspace of \mathbb{R}^{n} ? Which conditions for a subspace are fulfilled by V ?
(103) [1, Section 5.3 (cf. Section 5.6, Problem 5)] Consider a population of owls feeding on a population of flying squirrels in a wood. In month k, let o_{k} denote the number of owls and f_{k} the number of flying squirrels. Assume that the populations change every month as follows:

$$
\begin{aligned}
o_{k+1} & =0.3 o_{k}+0.4 f_{k} \\
f_{k+1} & =-0.4 o_{k}+1.3 f_{k}
\end{aligned}
$$

That is, if there would be no squirrels to hunt, only 30% of the owls would survive to the next month; if there were no owls that hunted squirrels, then the squirrel population would grow by factor 1.3 every month.

Let $\mathbf{x}_{k}=\left[\begin{array}{l}o_{k} \\ f_{k}\end{array}\right]$. Express the population change from \mathbf{x}_{k} to \mathbf{x}_{k+1} using a matrix A. Diagonalize A.
(104) Continue the previous problem: Let the starting population be $\mathbf{x}_{1}=\left[\begin{array}{c}o_{1} \\ f_{1}\end{array}\right]=\left[\begin{array}{c}20 \\ 100\end{array}\right]$.
(a) Give an explicit formula for the populations in month $k+1$.
(b) Are the populations growing or decreasing over time? By which factor?
(c) What is ratio of owls to squirrels after 12 months? After 24 months? Can you explain why?
(105) [1, cf. Section 6.1, Problems 19, 20] Are the following true or false? Why? All vectors are in \mathbb{R}^{n}.
(a) $\mathbf{v} \cdot \mathbf{v}=\|\mathbf{v}\|^{2}$.
(b) For any scalar $\mathrm{c}, \mathbf{u} \cdot(c \mathbf{v})=c(\mathbf{u} \cdot \mathbf{v})$.
(c) For a square matrix A, vectors in $\operatorname{Col} A$ are orthogonal to vectors in $\operatorname{Nul} A$.
(d) If \mathbf{x} is orthogonal to every vector in $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$, then \mathbf{x} is also orthogonal to every vector in $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$.
(e) If $\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}=\|\mathbf{u}+\mathbf{v}\|^{2}$, then \mathbf{u} and \mathbf{v} are orthogonal.
(106) [1, Section 6.1] Let $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}5 \\ -1 \\ -1\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{l}2 \\ 0 \\ 3\end{array}\right]$.
(a) Compute the distance between \mathbf{u}_{1} and \mathbf{u}_{2} as well as between \mathbf{u}_{2} and \mathbf{u}_{3}.
(b) Compute the angle (in degrees) between \mathbf{u}_{1} and \mathbf{u}_{2} as well as between \mathbf{u}_{2} and \mathbf{u}_{3}.
(107) $\left[1\right.$, Section 6.2] Let $\mathbf{u}_{1}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}1 \\ 3 \\ -3\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{c}6 \\ -1 \\ 1\end{array}\right]$.
(a) Verify that $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is an orthogonal set.
(b) Write every unit vector $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3} \in \mathbb{R}^{3}$ as linear combination $c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+c_{3} \mathbf{u}_{3}$.
(108) [1, Section 6.1] Let $V=\operatorname{Span}\left\{\left[\begin{array}{c}1 \\ 6 \\ -1\end{array}\right],\left[\begin{array}{c}-3 \\ 1 \\ 3\end{array}\right]\right\}$ be a subspace of \mathbb{R}^{3}. Compute the orthogonal complement of V.

References

[1] David C. Lay. Linear Algebra and Its Applications. Addison-Wesley, 4th edition, 2012.

