Math 3130-Assignment 10

Due April 1, 2016
Markus Steindl
(81) [1, Section 4.3] Let A be an $n \times n$ matrix. Is

$$
H=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid A \mathbf{x}=2 \mathbf{x}\right\}
$$

a subspace of \mathbb{R}^{n} ? Which conditions for a subspace are fulfilled by H ?

Solution:

Yes. We show the subspace conditions. (1) Since $A \mathbf{0}=2 \mathbf{0}$, the zero vector is in H.
(2) Let $\mathbf{u}, \mathbf{v} \in H$. Then $A(\mathbf{u}+\mathbf{v})=A \mathbf{u}+A \mathbf{v}=2 \mathbf{u}+2 \mathbf{v}=2(\mathbf{u}+\mathbf{v})$. Thus $\mathbf{u}+\mathbf{v} \in H$.
(3) Let $r \in \mathbb{R}$. Then $A(r \mathbf{u})=r A \mathbf{u}=r 2 \mathbf{u}=2(r \mathbf{u})$. Thus $r \mathbf{u} \in H$.
(82) [1, Section 4.3] Let \mathbf{u}, \mathbf{v} be linearly independent vectors in a vector space V.
(a) Find all $x_{1}, x_{2} \in \mathbb{R}$ such that

$$
x_{1}(\mathbf{u}+\mathbf{v})+x_{2}(\mathbf{u}-\mathbf{v})=0 .
$$

(b) Are the vectors $\mathbf{u}+\mathbf{v}$ and $\mathbf{u}-\mathbf{v}$ linearly independent?

Solution:

(a) (4 points) We have

$$
\left(x_{1}+x_{2}\right) \mathbf{u}+\left(x_{1}-x_{2}\right) \mathbf{v}=\mathbf{0} .
$$

Since \mathbf{u}, \mathbf{v} are linearly independent, the coefficients $x_{1}+x_{2}$ and $x_{1}-x_{2}$ have to be zero:

$$
\begin{aligned}
& x_{1}+x_{2}=0, \\
& x_{1}-x_{2}=0 .
\end{aligned}
$$

The solution of this system is $x_{1}=x_{2}=0$.
(b) (1 points) The equation from (a) has only the trivial solution. Thus $\mathbf{u}+\mathbf{v}, \mathbf{u}-\mathbf{v}$ are linearly independent.
(83) [1, Section 4.4] Let $B=\left(\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right)=\left(1+t, 1+t^{2}, t+t^{2}\right)$ be a basis of \mathbb{P}_{2}, and let $\mathbf{u}=1+t^{2}$ and $\mathbf{v}=2 t$.
(a) Write both \mathbf{u} and \mathbf{v} as linear combination of $\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}$.
(b) Give the B-coordinates $[\mathbf{u}]_{B}$ and $[\mathbf{v}]_{B}$.

Solution:

(a) (4 points) Since \mathbf{u} is the second basis vector, we have $\mathbf{u}=\mathbf{b}_{2}$.

We solve $x_{1} \mathbf{b}_{1}+x_{2} \mathbf{b}_{2}+x_{3} \mathbf{b}_{3}=\mathbf{v}$, i.e.,

$$
x_{1}(1+t)+x_{2}\left(1+t^{2}\right)+x_{3}\left(t+t^{2}\right)=2 t .
$$

We expand and collect terms with equal powers of t :

$$
\underbrace{\left(x_{1}+x_{2}\right)}_{0}+\underbrace{\left(x_{1}+x_{3}\right)}_{2} t+\underbrace{\left(x_{2}+x_{3}\right)}_{0} t^{2}=0+2 t+0 t^{2} .
$$

This yields a linear system in x_{1}, x_{2}, x_{3}. We reduce the augmented matrix:

$$
\left[\begin{array}{lll|l}
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 2 \\
0 & 1 & 1 & 0
\end{array}\right] \sim \cdots \sim\left[\begin{array}{lll|c}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

The solution is $\left(x_{1}, x_{2}, x_{3}\right)=(1,-1,1)$. Thus $\mathbf{v}=\mathbf{b}_{1}-\mathbf{b}_{2}+\mathbf{b}_{3}$.
(b) (1 point)

$$
[\mathbf{u}]_{B}=\left[\mathbf{b}_{2}\right]_{B}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad[\mathbf{v}]_{B}=\left[\mathbf{b}_{1}-\mathbf{b}_{2}+\mathbf{b}_{3}\right]_{B}=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right] .
$$

(84) For which $\lambda \in \mathbb{R}$ is

$$
\begin{equation*}
\lambda\left(\lambda^{2}-2\right)\left(\lambda^{2}+1\right)\left(\lambda^{2}-3 \lambda+2\right)=0 ? \tag{1}
\end{equation*}
$$

Solution:

The product is zero iff at least one of the factors is zero. Case $1, \lambda=0$.
Case $2, \lambda^{2}-2=0$. This means $\lambda^{2}=2$, and thus λ is $\sqrt{2}$ or $-\sqrt{2}$.
Case $3, \lambda^{2}+1=0$. This case cannot apply since $\lambda^{2}+1$ is always ≥ 1.
Case $4, \lambda^{2}-3 \lambda+2=0$. The formula for quadratic equations yields

$$
\lambda=\frac{3 \pm \sqrt{3^{2}-4 \cdot 2}}{2}=\frac{3}{2} \pm \frac{1}{2} \in\{1,2\} .
$$

Answer: Formula (1) holds iff $\lambda \in\{0,1,2, \sqrt{2},-\sqrt{2}\}$.
(85) [1, Section 3.2] For which $\mu \in \mathbb{R}$ has the matrix

$$
B=\left[\begin{array}{cc}
6-\mu & 2 \\
-6 & -1-\mu
\end{array}\right]
$$

a determinant $\operatorname{det} B=0$?

Solution:

$\operatorname{det} B=(6-\mu)(-1-\mu)-(-12)=\mu^{2}+\mu-6 \mu-6+12=\mu^{2}-5 \mu+6$.
Now $\operatorname{det} B=0$ yields a quadratic equation $\mu^{2}-5 \mu+6=0$ whose solution is

$$
\mu=\frac{5 \pm \sqrt{5^{2}-4 \cdot 6}}{2}=\frac{5}{2} \pm \frac{1}{2} \in\{2,3\}
$$

Thus $\operatorname{det} B=0$ iff $\mu \in\{2,3\}$.
(86) [1, Section 4.2] Let

$$
A=\left[\begin{array}{cc}
6 & 2 \\
-6 & -1
\end{array}\right]
$$

(a) Compute the matrices $A-2 I, A-3 I$, and $A-I$.
(b) Find all $\mathbf{x} \in \mathbb{R}^{2}$ such that $A \mathbf{x}=2 \mathbf{x}$. Give the parametric vector form for the solution set.
Hint: $A \mathbf{x}=2 \mathbf{x}$ iff $A \mathbf{x}=2 I \mathrm{x}$ iff $(A-2 I) \mathbf{x}=\mathbf{0}$.
(c) Find all $\mathbf{x} \in \mathbb{R}^{2}$ such that $A \mathbf{x}=3 \mathbf{x}$. Give the parametric vector form.
(d) Find all $\mathbf{x} \in \mathbb{R}^{2}$ such that $A \mathbf{x}=\mathbf{x}$. Give the parametric vector form.

Solution:

(a)

$$
A-2 I=\left[\begin{array}{cc}
4 & 2 \\
-6 & -3
\end{array}\right], \quad A-3 I=\left[\begin{array}{cc}
3 & 2 \\
-6 & -4
\end{array}\right], \quad A-I=\left[\begin{array}{cc}
5 & 2 \\
-6 & -2
\end{array}\right] .
$$

(b) We solve $(A-2 I) \mathbf{x}=\mathbf{0}$ and obtain $\mathbf{x}=r\left[\begin{array}{c}-\frac{1}{2} \\ 1\end{array}\right]$ for $r \in \mathbb{R}$.
(c) We solve $(A-3 I) \mathbf{x}=\mathbf{0}$ and obtain $\mathbf{x}=r\left[\begin{array}{c}-\frac{2}{3} \\ 1\end{array}\right]$ for $r \in \mathbb{R}$.
(d) We solve $(A-I) \mathbf{x}=\mathbf{0}$ and obtain $\mathbf{x}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$.
(87) [1, Section 3.2] For which $\lambda \in \mathbb{R}$ has the matrix

$$
B=\left[\begin{array}{ccc}
-2-\lambda & 0 & 2 \\
6 & 2-\lambda & -3 \\
-6 & 0 & 5-\lambda
\end{array}\right]
$$

a determinant $\operatorname{det} B=0$?

Solution:

Cofactor expansion across the second column yields

$$
\operatorname{det} B=(2-\lambda) \operatorname{det}\left[\begin{array}{cc}
-2-\lambda & 2 \\
-6 & 5-\lambda
\end{array}\right]=(2-\lambda)\left(\lambda^{2}-3 \lambda+2\right) .
$$

Now $\operatorname{det} B=0$ iff $\lambda=2$ or $\lambda^{2}-3 \lambda+2=0$. The quadratic equation yields

$$
\lambda=\frac{3 \pm \sqrt{3^{2}-4 \cdot 2}}{2}=\frac{3}{2} \pm \frac{1}{2} \in\{1,2\} .
$$

Hence $\operatorname{det} B=0$ iff $\lambda \in\{1,2\}$.
(88) [1, Section 4.2] Let

$$
A=\left[\begin{array}{ccc}
-2 & 0 & 2 \\
6 & 2 & -3 \\
-6 & 0 & 5
\end{array}\right]
$$

(a) Compute the matrices $A-2 I$ and $A-I$.
(b) Find all $\mathbf{x} \in \mathbb{R}^{3}$ such that $A \mathbf{x}=2 \mathbf{x}$. Give the parametric vector form for the solution set.
(c) Find all $\mathbf{x} \in \mathbb{R}^{3}$ such that $A \mathbf{x}=\mathbf{x}$. Give the parametric vector form.

Solution:

(a)

$$
A-2 I=\left[\begin{array}{ccc}
-4 & 0 & 2 \\
6 & 0 & -3 \\
-6 & 0 & 3
\end{array}\right], \quad A-I=\left[\begin{array}{ccc}
-3 & 0 & 2 \\
6 & 1 & -3 \\
-6 & 0 & 4
\end{array}\right] .
$$

(b) We solve $(A-2 I) \mathbf{x}=\mathbf{0}$ and reduce the augmented matrix:

$$
\left[\begin{array}{ccc|c}
-4 & 0 & 2 & 0 \\
6 & 0 & -3 & 0 \\
-6 & 0 & 3 & 0
\end{array}\right] \sim \cdots \sim\left[\begin{array}{ccc|c}
1 & 0 & -\frac{1}{2} & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

We obtain

$$
\mathbf{x}=r\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+s\left[\begin{array}{l}
\frac{1}{2} \\
0 \\
1
\end{array}\right] \quad \text { for } r, s \in \mathbb{R}
$$

(c) We solve $(A-I) \mathbf{x}=\mathbf{0}$ and reduce the augmented matrix:

$$
\left[\begin{array}{ccc|c}
-3 & 0 & 2 & 0 \\
6 & 1 & -3 & 0 \\
-6 & 0 & 4 & 0
\end{array}\right] \sim \cdots \sim\left[\begin{array}{ccc|c}
1 & 0 & -\frac{2}{3} & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

We obtain

$$
\mathbf{x}=r\left[\begin{array}{c}
\frac{2}{3} \\
-1 \\
1
\end{array}\right] \quad \text { for } r \in \mathbb{R} .
$$

References

[1] David C. Lay. Linear Algebra and Its Applications. Addison-Wesley, 4th edition, 2012.

