Math 3130-Assignment 10

Due April 1, 2016

Markus Steindl

(81) [1, Section 4.3] Let A be an $n \times n$ matrix. Is

$$
H=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid A \mathbf{x}=2 \mathbf{x}\right\}
$$

a subspace of \mathbb{R}^{n} ? Which conditions for a subspace are fulfilled by H ?
(82) [1, Section 4.3] Let \mathbf{u}, \mathbf{v} be linearly independent vectors in a vector space V.
(a) Find all $x_{1}, x_{2} \in \mathbb{R}$ such that

$$
x_{1}(\mathbf{u}+\mathbf{v})+x_{2}(\mathbf{u}-\mathbf{v})=0 .
$$

(b) Are the vectors $\mathbf{u}+\mathbf{v}$ and $\mathbf{u}-\mathbf{v}$ linearly independent?
(83) [1, Section 4.4] Let $B=\left(\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right)=\left(1+t, 1+t^{2}, t+t^{2}\right)$ be a basis of \mathbb{P}_{2}, and let $\mathbf{u}=1+t^{2}$ and $\mathbf{v}=2 t$.
(a) Write both \mathbf{u} and \mathbf{v} as linear combination of $\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}$.
(b) Give the B-coordinates $[\mathbf{u}]_{B}$ and $[\mathbf{v}]_{B}$.
(84) For which $\lambda \in \mathbb{R}$ is

$$
\begin{equation*}
\lambda\left(\lambda^{2}-2\right)\left(\lambda^{2}+1\right)\left(\lambda^{2}-3 \lambda+2\right)=0 ? \tag{1}
\end{equation*}
$$

(85) $[1$, Section 3.2] For which $\mu \in \mathbb{R}$ has the matrix

$$
B=\left[\begin{array}{cc}
6-\mu & 2 \\
-6 & -1-\mu
\end{array}\right]
$$

a determinant $\operatorname{det} B=0$?
(86) [1, Section 4.2] Let

$$
A=\left[\begin{array}{cc}
6 & 2 \\
-6 & -1
\end{array}\right]
$$

(a) Compute the matrices $A-2 I, A-3 I$, and $A-I$.
(b) Find all $\mathbf{x} \in \mathbb{R}^{2}$ such that $A \mathbf{x}=2 \mathbf{x}$. Give the parametric vector form for the solution set.
Hint: $A \mathbf{x}=2 \mathbf{x}$ iff $A \mathbf{x}=2 I \mathrm{x}$ iff $(A-2 I) \mathbf{x}=\mathbf{0}$.
(c) Find all $\mathbf{x} \in \mathbb{R}^{2}$ such that $A \mathbf{x}=3 \mathbf{x}$. Give the parametric vector form.
(d) Find all $\mathbf{x} \in \mathbb{R}^{2}$ such that $A \mathbf{x}=\mathbf{x}$. Give the parametric vector form.
(87) [1, Section 3.2] For which $\lambda \in \mathbb{R}$ has the matrix

$$
B=\left[\begin{array}{ccc}
-2-\lambda & 0 & 2 \\
6 & 2-\lambda & -3 \\
-6 & 0 & 5-\lambda
\end{array}\right]
$$

a determinant $\operatorname{det} B=0$?
(88) [1, Section 4.2] Let

$$
A=\left[\begin{array}{ccc}
-2 & 0 & 2 \\
6 & 2 & -3 \\
-6 & 0 & 5
\end{array}\right]
$$

(a) Compute the matrices $A-2 I$ and $A-I$.
(b) Find all $\mathbf{x} \in \mathbb{R}^{3}$ such that $A \mathbf{x}=2 \mathbf{x}$. Give the parametric vector form for the solution set.
(c) Find all $\mathbf{x} \in \mathbb{R}^{3}$ such that $A \mathbf{x}=\mathbf{x}$. Give the parametric vector form.

References

[1] David C. Lay. Linear Algebra and Its Applications. Addison-Wesley, 4th edition, 2012.

