
Math 3130 - Assignment 9
Due March 18, 2016

Markus Steindl

(73) [1, Section 4.2] Let T : P3 → R, p 7→ p(3), be the map that evaluates a polynomial p
at x = 3.
(a) Show that T is linear.
(b) Determine the kernel and the range of T .
(c) Is T injective, surjective, bijective?

Solution:

(a) For linearity, let p, q ∈ P3. Their sum p + q is the polynomial that maps t to
p(t) + q(t). So

T (p + q) = (p + q)(3) = p(3) + q(3) = T (p) + T (q).

Further let c ∈ R. Then cp maps t to cp(t). So

T (cp) = (cp)(3) = cp(3) = cT (p).

Hence T is linear.
(b) The kernel of T , ker T , consists of all the polynomials that evaluate to 0 at 3,

that is,
ker T = {(t− 3)q : q ∈ P2}.

The range of T , T (P3), is R. For every b ∈ R, there exists a polynomial p ∈ P3
that is mapped to b. Choose for example the constant polynomial p(t) = b.

(c) Since the kernel of T is non-trivial, T is not injective.
Since the range of T is equal to its codomain, T is surjective.
T is not bijective since it is not injective.

�

(74) [1, Section 4.4]

(a) Let B = (

1
1
3

 ,

 2
−2
1

) be a basis of a subspace H of R3. Compute the coordinates

[u]B for u =

−5
11
5

 in H.

Solution:
Solve the linear system

c1

1
1
3

 + c2

 2
−2
1

 =

−5
11
5


to obtain c1 = 3, c2 = −4. So [u]B =

[
3
−4

]
. �
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(b) Let C = (1 + t, t + t2, 1 + t2) be a basis for P2. Compute the coordinates [p]C for
p = 2 + t2.
Solution:
Solve

c1(1 + t) + c2(t + t2) + c3(1 + t2) = 2 + t2.

Comparing the coefficients on both sides of this equation yields

c1 + c3 = 2 (constant part)
c1 + c2 = 0 (multiples of t)
c2 + c3 = 1 (multiples of t2)

Solving that system of linear equations yields c1 = 1
2 , c2 = −1

2 , c3 = 3
2 . So

[u]B =


1
2
−1

23
2

. �

(75) [1, Section 4.6]
(a) If A is a 3 × 4-matrix, what is the largest possible rank of A? What is the

smallest possible dimension of Nul A?
Solution:
The rank of a matrix is the number of its pivot elements, which is at most
the number of its rows and at most the number of its columns. So rankA ≤
max(3, 4) = 3. Since the largest possible rank is 3, the smallest number of free
variables in Ax = 0 is 1. So the dimension of Nul A is 1 or larger. �

(b) If the nullspace of a 4 × 6-matrix B has dimension 3, what is the dimension of
the row space of B?
Solution:
dim Nul A + dim Row A = the number of columns of A
So dim Row A = 6− dim Nul A = 6− 3 = 3. �

(76) [1, Sections 4.3-4.6] True or false? Explain your answers:
(a) Any plane in R3 is isomorphic to R2.

Solution:
False. Only planes through the origin are subspaces of R3. They are isomorphic
to R2 by the coordinate mapping. �

(b) A basis for V is a linear independent set that is as large as possible.
Solution:
True. If B is a basis and you add another vector v to B, the new set will be
linearly independent because v is a linear combination of the vectors in B.
On the other hand, assume B is a linearly independent set such that whenever
any other vector v is added to B, then the new set is linearly dependent. Then
any other vector must be a linear combination of the vectors in B. So B spans
V and B is a basis. �

(c) If v1, . . . , vk are linearly independent in V , then k ≤ dim V .
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Solution:
True. A linear independent set cannot have more elements than a basis of V .

�

(d) If B is an echelon form of A, then the pivot columns of B are a basis for Col A.
Solution:
False. The pivot columns of A are a basis for Col A. �

(e) The row space of AT is equal to the column space of A.
Solution:
True. Transposing a matrix A changes the columns of A to the rows of AT . �

(77) [1, Section 3.1] Compute the determinant of the matrices by cofactor expansion. Pick
a row or column that yields the least amount of computation:

A =

0 1 −3
5 4 −4
0 −3 −4

 B =


1 0 −3 0
3 1 5 1
2 0 0 0
7 1 −2 5

 .

Solution:
Expand det A down the first column:

det A = 0·det A11−5·det A21+0·det A31 = −5·det
[

1 −3
−3 −4

]
= −5(1(−4)−(−3)(−3)) = 65

Expand det B across 3rd row:

det B = 2 · det B13 = 2 · det

0 −3 0
1 5 1
1 −2 5


Expand across 1st row:

det B13 = −1(−3) det
[
1 1
1 5

]
= 3 · (1 · 5− 1 · 1) = 12

So det B = 2 · 12 = 24. �

(78) [1, Section 3.1] Rule of Sarrus for the determinant of 3× 3-matrices. Let

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33


Prove that

det A = a11a22a33 + a12a23a31 + a13a21a32 − a13a22a31 − a11a23a32 − a12a21a33

Hint: Expand det A across the first row.
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Solution:

det A = a11 · det A11 − a12 · det A12 + a13 · det A13

= a11 · det
[
a22 a23
a32 a33

]
− a12 · det

[
a21 a23
a31 a33

]
+ a13 · det

[
a21 a22
a31 a32

]
= a11(a22a33 − a23a32)− a12(a21a33 − a23a31) + a13(a21a32 − a22a31)
= a11a22a33 + a12a23a31 + a13a21a32 − a13a22a31 − a11a23a32 − a12a21a33

�

(79) [1, Section 3.1] Give two 3×3-matrices with determinat 5. (Hint: triangular matrices.)
Solution:
Any triangular or diagonal matrix whose diagonal elements multiply to 5 will do,
e.g.,

A =

1 0 0
0 1 0
0 0 5


�

(80) [1, Section 3.2] Compute the determinants by row reduction to echelon form:

A =

3 3 −3
3 4 −4
2 −3 −5

 B =


1 3 2 −4
0 1 2 −5
2 7 6 −3
−3 −10 −7 2


Solution:

det A = 3 · det

1 1 −1
3 4 −4
2 −3 −5

 factoring 3 from the first row

= 3 · det

1 1 −1
0 1 −1
0 −5 −3

 subtracting multiples of the first row from the others

= 3 · det

1 1 −1
0 1 −1
0 0 −8

 adding 5 times the second row to the third

= 3 · 1 · 1 · (−8) = −24.
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det B = det


1 3 2 −4
0 1 2 −5
0 1 2 5
0 −1 −1 −10



= det


1 3 2 −4
0 1 2 −5
0 0 0 10
0 0 1 −15



= − det


1 3 2 −4
0 1 2 −5
0 0 1 −15
0 0 0 10

 flipped row 3 and 4

= −1 · 1 · 1 · 10 = −10.

�

(81) [1, Section 3.2] Consider A =
[
a b
c d

]
.

(a) How does switching the rows effect the determinant? Compare det A and det
[
c d
a b

]
.

Solution:
Interchanging 2 rows changes the sign of the determinant:

det
[
c d
a b

]
= cb− ad = − det A

�

(b) How does adding a multiple of one row to the other row effect the determinant?

Compare det A and det
[

a b
c + ra d + rb

]
.

Solution:
Adding a multiple of the first row to another does not change the determinant:

det
[

a b
c + ra d + rb

]
= a(d + rb)− b(c + ra) = ad− bc = det A

�
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