Math 3130 - Assignment 9

Due March 18, 2016
Markus Steindl

(73) [1, Section 4.2] Let $T: \mathbb{P}_{3} \rightarrow \mathbb{R}, p \mapsto p(3)$, be the map that evaluates a polynomial p at $x=3$.
(a) Show that T is linear.
(b) Determine the kernel and the range of T.
(c) Is T injective, surjective, bijective?

Solution:

(a) For linearity, let $p, q \in \mathbb{P}_{3}$. Their sum $p+q$ is the polynomial that maps t to $p(t)+q(t)$. So

$$
T(p+q)=(p+q)(3)=p(3)+q(3)=T(p)+T(q) .
$$

Further let $c \in \mathbb{R}$. Then $c p$ maps t to $c p(t)$. So

$$
T(c p)=(c p)(3)=c p(3)=c T(p)
$$

Hence T is linear.
(b) The kernel of T, $\operatorname{ker} T$, consists of all the polynomials that evaluate to 0 at 3 , that is,

$$
\operatorname{ker} T=\left\{(t-3) q: q \in \mathbb{P}_{2}\right\}
$$

The range of $T, T\left(\mathbb{P}_{3}\right)$, is \mathbb{R}. For every $b \in \mathbb{R}$, there exists a polynomial $p \in \mathbb{P}_{3}$ that is mapped to b. Choose for example the constant polynomial $p(t)=b$.
(c) Since the kernel of T is non-trivial, T is not injective.

Since the range of T is equal to its codomain, T is surjective.
T is not bijective since it is not injective.
(74) [1, Section 4.4]
(a) Let $B=\left(\left[\begin{array}{l}1 \\ 1 \\ 3\end{array}\right],\left[\begin{array}{c}2 \\ -2 \\ 1\end{array}\right]\right)$ be a basis of a subspace H of \mathbb{R}^{3}. Compute the coordinates
$[u]_{B}$ for $u=\left[\begin{array}{c}-5 \\ 11 \\ 5\end{array}\right]$ in H.

Solution:

Solve the linear system

$$
c_{1}\left[\begin{array}{l}
1 \\
1 \\
3
\end{array}\right]+c_{2}\left[\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right]=\left[\begin{array}{c}
-5 \\
11 \\
5
\end{array}\right]
$$

to obtain $c_{1}=3, c_{2}=-4$. So $[u]_{B}=\left[\begin{array}{c}3 \\ -4\end{array}\right]$.
(b) Let $C=\left(1+t, t+t^{2}, 1+t^{2}\right)$ be a basis for \mathbb{P}_{2}. Compute the coordinates $[p]_{C}$ for $p=2+t^{2}$.
Solution:
Solve

$$
c_{1}(1+t)+c_{2}\left(t+t^{2}\right)+c_{3}\left(1+t^{2}\right)=2+t^{2} .
$$

Comparing the coefficients on both sides of this equation yields

$$
\begin{array}{ll}
c_{1}+c_{3}=2 & (\text { constant part }) \\
c_{1}+c_{2}=0 & (\text { multiples of } t) \\
c_{2}+c_{3}=1 & \left(\text { multiples of } t^{2}\right)
\end{array}
$$

Solving that system of linear equations yields $c_{1}=\frac{1}{2}, c_{2}=-\frac{1}{2}, c_{3}=\frac{3}{2}$. So $[u]_{B}=\left[\begin{array}{c}\frac{1}{2} \\ -\frac{1}{2} \\ \frac{3}{2}\end{array}\right]$.
(75) [1, Section 4.6]
(a) If A is a 3×4-matrix, what is the largest possible rank of A ? What is the smallest possible dimension of $\operatorname{Nul} A$?

Solution:

The rank of a matrix is the number of its pivot elements, which is at most the number of its rows and at most the number of its columns. So $\operatorname{rank} A \leq$ $\max (3,4)=3$. Since the largest possible rank is 3, the smallest number of free variables in $A x=0$ is 1 . So the dimension of $\operatorname{Nul} A$ is 1 or larger.
(b) If the nullspace of a 4×6-matrix B has dimension 3 , what is the dimension of the row space of B ?

Solution:

$\operatorname{dim} \operatorname{Nul} A+\operatorname{dim}$ Row $A=$ the number of columns of A
So dim Row $A=6-\operatorname{dim} \operatorname{Nul} A=6-3=3$.
(76) [1, Sections 4.3-4.6] True or false? Explain your answers:
(a) Any plane in \mathbb{R}^{3} is isomorphic to \mathbb{R}^{2}.

Solution:
False. Only planes through the origin are subspaces of \mathbb{R}^{3}. They are isomorphic to \mathbb{R}^{2} by the coordinate mapping.
(b) A basis for V is a linear independent set that is as large as possible.

Solution:
True. If B is a basis and you add another vector v to B, the new set will be linearly independent because v is a linear combination of the vectors in B.
On the other hand, assume B is a linearly independent set such that whenever any other vector v is added to B, then the new set is linearly dependent. Then any other vector must be a linear combination of the vectors in B. So B spans V and B is a basis.
(c) If v_{1}, \ldots, v_{k} are linearly independent in V, then $k \leq \operatorname{dim} V$.

Solution:

True. A linear independent set cannot have more elements than a basis of V.
(d) If B is an echelon form of A, then the pivot columns of B are a basis for $\operatorname{Col} A$. Solution:
False. The pivot columns of A are a basis for $\operatorname{Col} A$.
(e) The row space of A^{T} is equal to the column space of A.

Solution:
True. Transposing a matrix A changes the columns of A to the rows of A^{T}.
(77) [1, Section 3.1] Compute the determinant of the matrices by cofactor expansion. Pick a row or column that yields the least amount of computation:

$$
A=\left[\begin{array}{ccc}
0 & 1 & -3 \\
5 & 4 & -4 \\
0 & -3 & -4
\end{array}\right] \quad B=\left[\begin{array}{cccc}
1 & 0 & -3 & 0 \\
3 & 1 & 5 & 1 \\
2 & 0 & 0 & 0 \\
7 & 1 & -2 & 5
\end{array}\right]
$$

Solution:

Expand $\operatorname{det} A$ down the first column:
$\operatorname{det} A=0 \cdot \operatorname{det} A_{11}-5 \cdot \operatorname{det} A_{21}+0 \cdot \operatorname{det} A_{31}=-5 \cdot \operatorname{det}\left[\begin{array}{cc}1 & -3 \\ -3 & -4\end{array}\right]=-5(1(-4)-(-3)(-3))=65$
Expand det B across 3rd row:

$$
\operatorname{det} B=2 \cdot \operatorname{det} B_{13}=2 \cdot \operatorname{det}\left[\begin{array}{ccc}
0 & -3 & 0 \\
1 & 5 & 1 \\
1 & -2 & 5
\end{array}\right]
$$

Expand across 1st row:

$$
\operatorname{det} B_{13}=-1(-3) \operatorname{det}\left[\begin{array}{ll}
1 & 1 \\
1 & 5
\end{array}\right]=3 \cdot(1 \cdot 5-1 \cdot 1)=12
$$

So $\operatorname{det} B=2 \cdot 12=24$.
(78) [1, Section 3.1] Rule of Sarrus for the determinant of 3×3-matrices. Let

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

Prove that

$$
\operatorname{det} A=a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-a_{13} a_{22} a_{31}-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}
$$

Hint: Expand $\operatorname{det} A$ across the first row.

Solution:

$$
\begin{aligned}
\operatorname{det} A & =a_{11} \cdot \operatorname{det} A_{11}-a_{12} \cdot \operatorname{det} A_{12}+a_{13} \cdot \operatorname{det} A_{13} \\
& =a_{11} \cdot \operatorname{det}\left[\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right]-a_{12} \cdot \operatorname{det}\left[\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right]+a_{13} \cdot \operatorname{det}\left[\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right] \\
& =a_{11}\left(a_{22} a_{33}-a_{23} a_{32}\right)-a_{12}\left(a_{21} a_{33}-a_{23} a_{31}\right)+a_{13}\left(a_{21} a_{32}-a_{22} a_{31}\right) \\
& =a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-a_{13} a_{22} a_{31}-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}
\end{aligned}
$$

(79) [1, Section 3.1] Give two 3×3-matrices with determinat 5. (Hint: triangular matrices.) Solution:
Any triangular or diagonal matrix whose diagonal elements multiply to 5 will do, e.g.,

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 5
\end{array}\right]
$$

(80) [1, Section 3.2] Compute the determinants by row reduction to echelon form:

$$
A=\left[\begin{array}{ccc}
3 & 3 & -3 \\
3 & 4 & -4 \\
2 & -3 & -5
\end{array}\right] \quad B=\left[\begin{array}{cccc}
1 & 3 & 2 & -4 \\
0 & 1 & 2 & -5 \\
2 & 7 & 6 & -3 \\
-3 & -10 & -7 & 2
\end{array}\right]
$$

Solution:

$$
\begin{aligned}
\operatorname{det} A & =3 \cdot \operatorname{det}\left[\begin{array}{ccc}
1 & 1 & -1 \\
3 & 4 & -4 \\
2 & -3 & -5
\end{array}\right] \quad \text { factoring } 3 \text { from the first row } \\
& =3 \cdot \operatorname{det}\left[\begin{array}{ccc}
1 & 1 & -1 \\
0 & 1 & -1 \\
0 & -5 & -3
\end{array}\right] \quad \text { subtracting multiples of the first row from the others } \\
& =3 \cdot \operatorname{det}\left[\begin{array}{ccc}
1 & 1 & -1 \\
0 & 1 & -1 \\
0 & 0 & -8
\end{array}\right] \quad \text { adding } 5 \text { times the second row to the third } \\
& =3 \cdot 1 \cdot 1 \cdot(-8)=-24 .
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{det} B & =\operatorname{det}\left[\begin{array}{cccc}
1 & 3 & 2 & -4 \\
0 & 1 & 2 & -5 \\
0 & 1 & 2 & 5 \\
0 & -1 & -1 & -10
\end{array}\right] \\
& =\operatorname{det}\left[\begin{array}{llll}
1 & 3 & 2 & -4 \\
0 & 1 & 2 & -5 \\
0 & 0 & 0 & 10 \\
0 & 0 & 1 & -15
\end{array}\right] \\
& =-\operatorname{det}\left[\begin{array}{llll}
1 & 3 & 2 & -4 \\
0 & 1 & 2 & -5 \\
0 & 0 & 1 & -15 \\
0 & 0 & 0 & 10
\end{array}\right] \quad \text { flipped row } 3 \text { and } 4 \\
& =-1 \cdot 1 \cdot 1 \cdot 10=-10 .
\end{aligned}
$$

(81) $\left[1\right.$, Section 3.2] Consider $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.
(a) How does switching the rows effect the determinant? Compare $\operatorname{det} A$ and $\operatorname{det}\left[\begin{array}{ll}c & d \\ a & b\end{array}\right]$.

Solution:

Interchanging 2 rows changes the sign of the determinant:

$$
\operatorname{det}\left[\begin{array}{ll}
c & d \\
a & b
\end{array}\right]=c b-a d=-\operatorname{det} A
$$

(b) How does adding a multiple of one row to the other row effect the determinant?

Compare $\operatorname{det} A$ and $\operatorname{det}\left[\begin{array}{cc}a & b \\ c+r a & d+r b\end{array}\right]$.

Solution:

Adding a multiple of the first row to another does not change the determinant:

$$
\operatorname{det}\left[\begin{array}{cc}
a & b \\
c+r a & d+r b
\end{array}\right]=a(d+r b)-b(c+r a)=a d-b c=\operatorname{det} A
$$

References

[1] David C. Lay. Linear Algebra and Its Applications. Addison-Wesley, 4th edition, 2012.

