Math 3130 - Assignment 9

Due March 18, 2016
Markus Steindl

(73) [1, Section 4.2] Let $T: \mathbb{P}_{3} \rightarrow \mathbb{R}, p \mapsto p(3)$, be the map that evaluates a polynomial p at $x=3$.
(a) Show that T is linear.
(b) Determine the kernel and the range of T.
(c) Is T injective, surjective, bijective?
(74) [1, Section 4.4]
(a) Let $B=\left(\left[\begin{array}{l}1 \\ 1 \\ 3\end{array}\right],\left[\begin{array}{c}2 \\ -2 \\ 1\end{array}\right]\right)$ be a basis of a subspace H of \mathbb{R}^{3}. Compute the coordinates $[u]_{B}$ for $u=\left[\begin{array}{c}-5 \\ 11 \\ 5\end{array}\right]$ in H.
(b) Let $C=\left(1+t, t+t^{2}, 1+t^{2}\right)$ be a basis for \mathbb{P}_{2}. Compute the coordinates $[p]_{C}$ for $p=2+t^{2}$.
(75) [1, Section 4.6]
(a) If A is a 3×4-matrix, what is the largest possible rank of A ? What is the smallest possible dimension of $\mathrm{Nul} A$?
(b) If the nullspace of a 4×6-matrix B has dimension 3 , what is the dimension of the row space of B ?
(76) [1, Sections 4.3-4.6] True or false? Explain your answers:
(a) Any plane in \mathbb{R}^{3} is isomorphic to \mathbb{R}^{2}.
(b) A basis for V is a linear independent set that is as large as possible.
(c) If v_{1}, \ldots, v_{k} are linearly independent in V, then $k \leq \operatorname{dim} V$.
(d) If B is an echelon form of A, then the pivot columns of B are a basis for $\operatorname{Col} A$.
(e) The row space of A^{T} is equal to the column space of A.
(77) [1, Section 3.1] Compute the determinant of the matrices by cofactor expansion. Pick a row or column that yields the least amount of computation:

$$
A=\left[\begin{array}{ccc}
0 & 1 & -3 \\
5 & 4 & -4 \\
0 & -3 & -4
\end{array}\right] \quad B=\left[\begin{array}{cccc}
1 & 0 & -3 & 0 \\
3 & 1 & 5 & 1 \\
2 & 0 & 0 & 0 \\
7 & 1 & -2 & 5
\end{array}\right]
$$

(78) [1, Section 3.1] Rule of Sarrus for the determinant of 3×3-matrices. Let

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

Prove that
$\operatorname{det} A=a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-\left(a_{13} a_{22} a_{31}+a_{11} a_{23} a_{32}+a_{12} a_{21} a_{33}\right)$
Hint: Expand $\operatorname{det} A$ across the first row.
(79) [1, Section 3.1] Give two 3×3-matrices with determinat 5. (Hint: triangular matrices.)
(80) [1, Section 3.2] Compute the determinants by row reduction to echelon form:

$$
A=\left[\begin{array}{ccc}
3 & 3 & -3 \\
3 & 4 & -4 \\
2 & -3 & -5
\end{array}\right] \quad B=\left[\begin{array}{cccc}
1 & 3 & 2 & -4 \\
0 & 1 & 2 & -5 \\
2 & 7 & 6 & -3 \\
-3 & -10 & -7 & 2
\end{array}\right]
$$

(81) $\left[1\right.$, Section 3.2] Consider $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.
(a) How does switching the rows effect the determinant? Compare $\operatorname{det} A$ and $\operatorname{det}\left[\begin{array}{ll}c & d \\ a & b\end{array}\right]$.
(b) How does adding a multiple of one row to the other row effect the determinant?

Compare $\operatorname{det} A$ and $\operatorname{det}\left[\begin{array}{cc}a & b \\ c+r a & d+r b\end{array}\right]$.
References
[1] David C. Lay. Linear Algebra and Its Applications. Addison-Wesley, 4th edition, 2012.

