Math 3130-Assignment 8

Due March 11, 2016
Markus Steindl
(64) $[1$, Section 4.2] Let U, V, W be vector spaces, and let $f: U \rightarrow V$ and $g: V \rightarrow W$ be linear mappings.
(a) Show that the composition mapping $h: U \rightarrow W, \mathbf{u} \mapsto g(f(\mathbf{u}))$ is linear.

Solution:

Let $\mathbf{u}, \mathbf{v} \in U$ and $r \in \mathbb{R}$. Then

$$
\begin{aligned}
h(\mathbf{u}+\mathbf{v}) & =g(f(\mathbf{u}+\mathbf{v})) \\
& =g(f(\mathbf{u})+f(\mathbf{v})) \quad \text { by linearity of } f, \\
& =g(f(\mathbf{u}))+g(f(\mathbf{v})) \quad \text { by linearity of } g, \\
& =h(\mathbf{u})+h(\mathbf{v}) .
\end{aligned}
$$

Also,

$$
\begin{aligned}
h(r \mathbf{u}) & =g(f(r \mathbf{u})) \\
& =g(r f(\mathbf{u})) \quad \text { by linearity of } f, \\
& =r g(f(\mathbf{u})) \quad \text { by linearity of } g, \\
& =r h(\mathbf{u}) .
\end{aligned}
$$

Thus h is linear.
(b) Does it make sense to ask whether $k: V \rightarrow V$, $\mathbf{u} \mapsto f(g(\mathbf{v}))$ is linear?

Solution:

No. The vector $g(\mathbf{v})$ is in W, but we do not know if $g(\mathbf{v})$ is in U. Thus $g(\mathbf{v})$ cannot be an input of f.
(65) [1, Section 4.2] Let U, V be vector spaces and $T: U \rightarrow V$ be a linear mapping. Show that $T(\mathbf{0})=\mathbf{0}$.

Hint: Write down $T(\mathbf{0}+\mathbf{0})$ in two different ways.

Solution:

We have $T(\mathbf{0})=T(\mathbf{0}+\mathbf{0})=T(\mathbf{0})+T(\mathbf{0})$. So

$$
T(\mathbf{0})=T(\mathbf{0})+T(\mathbf{0})
$$

By subtracting $T(\mathbf{0})$ from each side we obtain $\mathbf{0}=T(\mathbf{0})$.
(66) [1, Section 4.2] Let U, V be vector spaces and $T: U \rightarrow V$ be a linear mapping. Show that the range $\operatorname{Rg} T$ is a subspace of V.

Solution:

We show the subspace conditions. (1) By problem (65) $T(\mathbf{0})=\mathbf{0}$. Thus the zero vector is in the range.
(2) and (3): Let $\mathbf{v}_{1}, \mathbf{v}_{2} \in \operatorname{Rg} T$ and $r \in \mathbb{R}$. We have to show that $\mathbf{v}_{1}+\mathbf{v}_{2} \in \operatorname{Rg} T$ and $r \mathbf{v}_{1} \in \operatorname{Rg} T$. Since $\mathbf{v}_{1}, \mathbf{v}_{2}$ are in the range, there are $\mathbf{u}_{1}, \mathbf{u}_{2} \in U$ such that $T\left(\mathbf{u}_{1}\right)=\mathbf{v}_{1}$
and $T\left(\mathbf{u}_{2}\right)=\mathbf{v}_{2}$. Now

$$
\mathbf{v}_{1}+\mathbf{v}_{2}=T\left(\mathbf{u}_{1}\right)+T\left(\mathbf{u}_{2}\right)=T\left(\mathbf{u}_{1}+\mathbf{u}_{2}\right)
$$

This means $\mathbf{v}_{1}+\mathbf{v}_{2}$ is the image of $\mathbf{u}_{1}+\mathbf{u}_{2}$. Thus $\mathbf{v}_{1}+\mathbf{v}_{2} \in \operatorname{Rg} T$.
Also,

$$
r \mathbf{v}_{1}=r T\left(\mathbf{u}_{1}\right)=T\left(r \mathbf{u}_{1}\right)
$$

Thus $r \mathbf{v}_{1}$ is the image of $r \mathbf{u}_{1}$, and hence $r \mathbf{v}_{1} \in \operatorname{Rg} T$.
(67) [1, Section 4.3] Let $V=\{f: \mathbb{R} \rightarrow \mathbb{R}\}$ be a vector space of functions. Is the set $\left\{\cos t, \sin t, \sin \left(t+\frac{\pi}{4}\right)\right\}$ linearly independent?

Hint: Use the formula for $\sin (\alpha+\beta)$.

Solution:

No. Since $\sin (\alpha+\beta)=\sin (\alpha) \cos (\beta)+\cos (\alpha) \sin (\beta)$, we have

$$
\sin \left(t+\frac{\pi}{4}\right)=\sin (t) \cos \left(\frac{\pi}{4}\right)+\cos (t) \sin \left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}} \sin (t)+\frac{1}{\sqrt{2}} \cos (t)
$$

Thus $\sin \left(t+\frac{\pi}{4}\right)$ is a linear combination of $\sin (t)$ and $\cos (t)$. The vectors are not linearly independent.
(68) $\left[1\right.$, Section 4.4] Let $B=\left(\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1\end{array}\right]\right)$ and $C=\left(\left[\begin{array}{l}2 \\ 5\end{array}\right],\left[\begin{array}{l}1 \\ 3\end{array}\right]\right)$ be bases of \mathbb{R}^{2}.
(a) Find the standard matrix for $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},[\mathbf{u}]_{B} \mapsto \mathbf{u}$.

Solution:

Since $\mathbf{u}=P_{B}[\mathbf{u}]_{B}$, the standard matrix of f is $P_{B}=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$.
(b) Find the standard matrix for $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \mathbf{u} \mapsto[\mathbf{u}]_{C}$.

Solution:

Since $[\mathbf{u}]_{C}=P_{C}^{-1} \mathbf{u}$, the standard matrix of g is $P_{C}^{-1}=\left[\begin{array}{ll}2 & 1 \\ 5 & 3\end{array}\right]^{-1}=\left[\begin{array}{cc}3 & -1 \\ -5 & 2\end{array}\right]$.
(c) Find the standard matrix for $h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},[\mathbf{u}]_{B} \mapsto[\mathbf{u}]_{C}$. Hint: $h(\mathbf{x})=g(f(\mathbf{x}))$.

Solution:

Since

$$
h(\mathbf{x})=g(f(\mathbf{x}))=g\left(P_{B} \mathbf{x}\right)=P_{C}^{-1} P_{B} \mathbf{x}
$$

the standard matrix of h is $P_{C}^{-1} P_{B}=\left[\begin{array}{cc}3 & -1 \\ -5 & 2\end{array}\right]\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]=\left[\begin{array}{cc}2 & 4 \\ -3 & -7\end{array}\right]$
(69) [1, Sections 4.1-4.4] Let $B=\left(t, 2+t, t^{2}\right)$ and $C=\left(1, t+t^{2}, t^{2}\right)$ be bases of \mathbb{P}_{2}. Let h be the linear mapping $h: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3},[\mathbf{u}]_{B} \mapsto[\mathbf{u}]_{C}$.
(a) Compute $h\left(\mathbf{e}_{1}\right), h\left(\mathbf{e}_{2}\right), h\left(\mathbf{e}_{3}\right)$. Hint: If $[\mathbf{u}]_{B}=\mathbf{e}_{1}$, then $[\mathbf{u}]_{C}=h\left(\mathbf{e}_{1}\right)=$?
(b) Give the standard matrix of h.
(c) Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3} \in \mathbb{P}_{2}$ such that $\left[\mathbf{v}_{1}\right]_{B}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\mathbf{v}_{2}\right]_{B}=\left[\begin{array}{c}2 \\ -1 \\ 0\end{array}\right]$, and $\left[\mathbf{v}_{3}\right]_{B}=\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]$. Find $\left[\mathbf{v}_{1}\right]_{C},\left[\mathbf{v}_{2}\right]_{C},\left[\mathbf{v}_{3}\right]_{C}$.

Solution:

If $[\mathbf{u}]_{B}=\mathbf{e}_{1}$, then $\mathbf{u}=1 t+0(2+t)+0 t^{2}=t$. In order to compute $[\mathbf{u}]_{C}$, we have to find $x_{1}, x_{2}, x_{3} \in \mathbb{R}$ such that $x_{1} 1+x_{2}\left(t+t^{2}\right)+x_{3} t^{2}=\mathbf{u}=t$. I.e.,

$$
x_{1} 1+x_{2} t+\left(x_{2}+x_{3}\right) t^{2}=0 \cdot 1+1 \cdot t+0 \cdot t^{2}
$$

(a) (2 points) We compare the coefficients of the LHS and RHS and obtain

$$
x_{1}=0, x_{2}=1, x_{2}+x_{3}=0 .
$$

This yields

$$
h\left(\mathbf{e}_{1}\right)=[\mathbf{u}]_{C}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right] .
$$

By similar computations, we obtain the following:
If $[\mathbf{u}]_{B}=\mathbf{e}_{2}$, then $\mathbf{u}=2+t$ and $h\left(\mathbf{e}_{2}\right)=[\mathbf{u}]_{C}=\left[\begin{array}{c}2 \\ 1 \\ -1\end{array}\right]$.
If $[\mathbf{u}]_{B}=\mathbf{e}_{3}$, then $\mathbf{u}=t^{2}$ and $h\left(\mathbf{e}_{3}\right)=[\mathbf{u}]_{C}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$.
(b) (1 point) The standard matrix of h is given by

$$
A=\left[h\left(\mathbf{e}_{1}\right) h\left(\mathbf{e}_{2}\right) h\left(\mathbf{e}_{3}\right)\right]=\left[\begin{array}{ccc}
0 & 2 & 0 \\
1 & 1 & 0 \\
-1 & -1 & 1
\end{array}\right] .
$$

(c) (2 points)

$$
\begin{aligned}
& {\left[\mathbf{v}_{1}\right]_{C}=h\left(\left[\mathbf{v}_{1}\right]_{B}\right)=A\left[\mathbf{v}_{1}\right]_{B}=A\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
2 \\
2 \\
-1
\end{array}\right],} \\
& {\left[\mathbf{v}_{2}\right]_{C}=h\left(\left[\mathbf{v}_{2}\right]_{B}\right)=A\left[\mathbf{v}_{2}\right]_{B}=A\left[\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-2 \\
1 \\
-1
\end{array}\right],} \\
& {\left[\mathbf{v}_{3}\right]_{C}=h\left(\left[\mathbf{v}_{3}\right]_{B}\right)=A\left[\mathbf{v}_{3}\right]_{B}=A\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right] .}
\end{aligned}
$$

(70) [1, Section 4.3] Let $\mathbf{b}_{1}=\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{l}1 \\ 1 \\ 3\end{array}\right], \mathbf{b}_{3}=\left[\begin{array}{c}1 \\ 2.5 \\ -5\end{array}\right]$.
(a) Find vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$ such that $\left(\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$ is a basis for \mathbb{R}^{3}.
(b) Find vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{\ell}$ such that $\left(\mathbf{b}_{3}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{\ell}\right)$ is a basis for \mathbb{R}^{3}.

Prove that your choices for (a) and (b) form a basis.

Solution:

Both bases have 3 vectors. Thus $k=1$ and $\ell=2$.
(a) One possible choice is $\mathbf{u}_{1}=\mathbf{e}_{1}$. We show that $\left(\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{e}_{1}\right)$ is a basis by reducing the following augmented matrix to echelon form:

$$
\left[\begin{array}{ccc|c}
1 & 1 & 1 & 0 \\
2 & 1 & 0 & 0 \\
-1 & 3 & 0 & 0
\end{array}\right] \sim \cdots \sim\left[\begin{array}{lll|l}
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

There is no free variable. Thus the columns are linearly independent. Also, the vectors span \mathbb{R}^{3} since there is no zero row.
(b) One possible choice is $\mathbf{v}_{1}=\mathbf{e}_{1}$ and $\mathbf{v}_{2}=\mathbf{e}_{2}$. We show that $\left(\mathbf{b}_{3}, \mathbf{e}_{1}, \mathbf{e}_{2}\right)$ is a basis by reducing the following augmented matrix to echelon form:

$$
\left[\begin{array}{ccc|c}
1 & 1 & 0 & 0 \\
2.5 & 0 & 1 & 0 \\
-5 & 0 & 0 & 0
\end{array}\right] \sim \cdots \sim\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

There is no free variable. Thus the columns are linearly independent. Also, the vectors span \mathbb{R}^{3} since there is no zero row.
(71) [1, Sections 4.3, 4.5] Let

$$
A=\left[\begin{array}{ccccc}
-5 & 8 & 0 & -17 & -2 \\
3 & -5 & 1 & 5 & 1 \\
11 & -19 & 7 & 1 & 3 \\
7 & -13 & 5 & -3 & 1
\end{array}\right]
$$

Find bases and dimensions for $\operatorname{Nul} A, \operatorname{Col} A$, and $\operatorname{Row} A$, respectively.

Solution:

(1 point) We reduce A to reduced echelon form:

$$
A \sim \cdots \sim\left[\begin{array}{ccccc}
1 & 0 & 0 & 5 & 2 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & -5 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(2 points) For $\operatorname{Nul} A$, we solve $A \mathbf{x}=\mathbf{0}$ and obtain

$$
\operatorname{Nul} A=\left\{\left.r\left[\begin{array}{c}
-5 \\
-1 \\
5 \\
1 \\
0
\end{array}\right]+s\left[\begin{array}{c}
-2 \\
-1 \\
0 \\
0 \\
1
\end{array}\right] \right\rvert\, r, s \in \mathbb{R}\right\}
$$

The two vectors form a basis for $\operatorname{Nul} A$.
(1 point) The first three columns of A contain a pivot. Thus they form a basis

$$
B=\left(\left[\begin{array}{c}
-5 \\
3 \\
11 \\
7
\end{array}\right],\left[\begin{array}{c}
8 \\
-5 \\
-19 \\
-13
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
7 \\
5
\end{array}\right]\right)
$$

for $\operatorname{Col} A$.
(1 point) The nonzero rows in any echelon form of A form a basis. E.g.,

$$
C=\left(\left[\begin{array}{l}
1 \\
0 \\
0 \\
5 \\
2
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
1 \\
-5 \\
0
\end{array}\right]\right)
$$

is a basis for Row A.
(72) [1, Section 4.5] A 177×35 matrix A has 19 pivots. Find $\operatorname{dim} \operatorname{Nul} A, \operatorname{dim} \operatorname{Col} A$, dim Row A, and $\operatorname{rank} A$.

Solution:

The number of pivots, $\operatorname{dim} \operatorname{Row} A, \operatorname{dim} \operatorname{Col} A$, and the rank are equal. So dim Row $A=\operatorname{dim} \operatorname{Col} A=\operatorname{rank} A=19$.
By the rank theorem, $\operatorname{dim} \operatorname{Nul} A+\operatorname{rank} A=35$. Thus

$$
\operatorname{dim} \operatorname{Nul} A=35-19=16
$$

Thus

References

[1] David C. Lay. Linear Algebra and Its Applications. Addison-Wesley, 4th edition, 2012.

