Math 3130 - Assignment 8

Due March 11, 2016 Markus Steindl

(64) [1, Section 4.2] Let U, V, W be vector spaces, and let $f: U \to V$ and $g: V \to W$ be linear mappings.

(a) Show that the composition mapping $h: U \to W$, $\mathbf{u} \mapsto g(f(\mathbf{u}))$ is linear.

- (b) Does it make sense to ask whether $k: V \to V$, $\mathbf{u} \mapsto f(g(\mathbf{v}))$ is linear?
- (65) [1, Section 4.2] Let U, V be vector spaces and $T: U \to V$ be a linear mapping. Show that $T(\mathbf{0}) = \mathbf{0}$.
 - Hint: Write down $T(\mathbf{0} + \mathbf{0})$ in two different ways.
- (66) [1, Section 4.2] Let U, V be vector spaces and $T: U \to V$ be a linear mapping. Show that the range $\operatorname{Rg} T$ is a subspace of V.
- (67) [1, Section 4.3] Let $V = \{f : \mathbb{R} \to \mathbb{R}\}$ be a vector space of functions. Is the set $\{\cos t, \sin t, \sin(t + \frac{\pi}{4})\}$ linearly independent? Hint: Use the formula for $\sin(\alpha + \beta)$.

(68) [1, Section 4.4] Let
$$B = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
 and $C = \begin{pmatrix} 2 \\ 5 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ be bases of \mathbb{R}^2 .

- (a) Find the standard matrix for $f : \mathbb{R}^2 \to \mathbb{R}^2$, $[\mathbf{u}]_B \mapsto \mathbf{u}$.
- (b) Find the standard matrix for $g: \mathbb{R}^2 \to \mathbb{R}^2$, $\mathbf{u} \mapsto [\mathbf{u}]_C$.
- (c) Find the standard matrix for $h: \mathbb{R}^2 \to \mathbb{R}^2$, $[\mathbf{u}]_B \mapsto [\mathbf{u}]_C$. Hint: $h(\mathbf{x}) = g(f(\mathbf{x}))$.
- (69) [1, Sections 4.1–4.4] Let $B = (t, 2 + t, t^2)$ and $C = (1, t + t^2, t^2)$ be bases of \mathbb{P}_2 . Let h be the linear mapping $h \colon \mathbb{R}^3 \to \mathbb{R}^3$, $[\mathbf{u}]_B \mapsto [\mathbf{u}]_C$.
 - (a) Compute $h(\mathbf{e}_1), h(\mathbf{e}_2), h(\mathbf{e}_3)$. Hint: If $[\mathbf{u}]_B = \mathbf{e}_1$, then $[\mathbf{u}]_C = h(\mathbf{e}_1) = ?$
 - (b) Give the standard matrix of h.

(c) Let
$$\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \in \mathbb{P}_2$$
 such that $[\mathbf{v}_1]_B = \begin{bmatrix} 1\\1\\1 \end{bmatrix}, [\mathbf{v}_2]_B = \begin{bmatrix} 2\\-1\\0 \end{bmatrix}, \text{ and } [\mathbf{v}_3]_B = \begin{bmatrix} 0\\1\\2 \end{bmatrix}.$ Find
 $[\mathbf{v}_1]_C, [\mathbf{v}_2]_C, [\mathbf{v}_3]_C.$

(70) [1, Section 4.3] Let
$$\mathbf{b}_1 = \begin{bmatrix} 1\\ 2\\ -1 \end{bmatrix}$$
, $\mathbf{b}_2 = \begin{bmatrix} 1\\ 1\\ 3 \end{bmatrix}$, $\mathbf{b}_3 = \begin{bmatrix} 1\\ 2.5\\ -5 \end{bmatrix}$

- (a) Find vectors $\mathbf{u}_1, \ldots, \mathbf{u}_k$ such that $(\mathbf{b}_1, \mathbf{b}_2, \mathbf{u}_1, \ldots, \mathbf{u}_k)$ is a basis for \mathbb{R}^3 .
- (b) Find vectors $\mathbf{v}_1, \ldots, \mathbf{v}_\ell$ such that $(\mathbf{b}_3, \mathbf{v}_1, \ldots, \mathbf{v}_\ell)$ is a basis for \mathbb{R}^3 .

Prove that your choices for (a) and (b) form a basis.

(71) [1, Sections 4.3, 4.5] Let

$$A = \begin{bmatrix} -5 & 8 & 0 & -17 & -2 \\ 3 & -5 & 1 & 5 & 1 \\ 11 & -19 & 7 & 1 & 3 \\ 7 & -13 & 5 & -3 & 1 \end{bmatrix}.$$

Find bases and dimensions for Nul A, Col A, and Row A, respectively.

(72) [1, Section 4.5] A 177×35 matrix A has 19 pivots. Find dim Nul A, dim Col A, dim Row A, and rank A.

References

[1] David C. Lay. Linear Algebra and Its Applications. Addison-Wesley, 4th edition, 2012.