Math 3130-Assignment 8

Due March 11, 2016
Markus Steindl
(64) [1, Section 4.2] Let U, V, W be vector spaces, and let $f: U \rightarrow V$ and $g: V \rightarrow W$ be linear mappings.
(a) Show that the composition mapping $h: U \rightarrow W, \mathbf{u} \mapsto g(f(\mathbf{u}))$ is linear.
(b) Does it make sense to ask whether $k: V \rightarrow V, \mathbf{u} \mapsto f(g(\mathbf{v}))$ is linear?
(65) [1, Section 4.2] Let U, V be vector spaces and $T: U \rightarrow V$ be a linear mapping. Show that $T(\mathbf{0})=\mathbf{0}$.

Hint: Write down $T(\mathbf{0}+\mathbf{0})$ in two different ways.
(66) [1, Section 4.2] Let U, V be vector spaces and $T: U \rightarrow V$ be a linear mapping. Show that the range $\operatorname{Rg} T$ is a subspace of V.
(67) [1, Section 4.3] Let $V=\{f: \mathbb{R} \rightarrow \mathbb{R}\}$ be a vector space of functions. Is the set $\left\{\cos t, \sin t, \sin \left(t+\frac{\pi}{4}\right)\right\}$ linearly independent?

Hint: Use the formula for $\sin (\alpha+\beta)$.
(68) $\left[1\right.$, Section 4.4] Let $B=\left(\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1\end{array}\right]\right)$ and $C=\left(\left[\begin{array}{l}2 \\ 5\end{array}\right],\left[\begin{array}{l}1 \\ 3\end{array}\right]\right)$ be bases of \mathbb{R}^{2}.
(a) Find the standard matrix for $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},[\mathbf{u}]_{B} \mapsto \mathbf{u}$.
(b) Find the standard matrix for $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \mathbf{u} \mapsto[\mathbf{u}]_{C}$.
(c) Find the standard matrix for $h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},[\mathbf{u}]_{B} \mapsto[\mathbf{u}]_{C}$. Hint: $h(\mathbf{x})=g(f(\mathbf{x}))$.
(69) [1, Sections 4.1-4.4] Let $B=\left(t, 2+t, t^{2}\right)$ and $C=\left(1, t+t^{2}, t^{2}\right)$ be bases of \mathbb{P}_{2}. Let h be the linear mapping $h: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3},[\mathbf{u}]_{B} \mapsto[\mathbf{u}]_{C}$.
(a) Compute $h\left(\mathbf{e}_{1}\right), h\left(\mathbf{e}_{2}\right), h\left(\mathbf{e}_{3}\right)$. Hint: If $[\mathbf{u}]_{B}=\mathbf{e}_{1}$, then $[\mathbf{u}]_{C}=h\left(\mathbf{e}_{1}\right)=$?
(b) Give the standard matrix of h.
(c) Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3} \in \mathbb{P}_{2}$ such that $\left[\mathbf{v}_{1}\right]_{B}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\mathbf{v}_{2}\right]_{B}=\left[\begin{array}{c}2 \\ -1 \\ 0\end{array}\right]$, and $\left[\mathbf{v}_{3}\right]_{B}=\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]$. Find $\left[\mathbf{v}_{1}\right]_{C},\left[\mathbf{v}_{2}\right]_{C},\left[\mathbf{v}_{3}\right]_{C}$.
(70) $\left[1\right.$, Section 4.3] Let $\mathbf{b}_{1}=\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{l}1 \\ 1 \\ 3\end{array}\right], \mathbf{b}_{3}=\left[\begin{array}{c}1 \\ 2.5 \\ -5\end{array}\right]$.
(a) Find vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$ such that $\left(\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$ is a basis for \mathbb{R}^{3}.
(b) Find vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{\ell}$ such that $\left(\mathbf{b}_{3}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{\ell}\right)$ is a basis for \mathbb{R}^{3}.

Prove that your choices for (a) and (b) form a basis.
(71) [1, Sections 4.3, 4.5] Let

$$
A=\left[\begin{array}{ccccc}
-5 & 8 & 0 & -17 & -2 \\
3 & -5 & 1 & 5 & 1 \\
11 & -19 & 7 & 1 & 3 \\
7 & -13 & 5 & -3 & 1
\end{array}\right]
$$

Find bases and dimensions for $\operatorname{Nul} A, \operatorname{Col} A$, and Row A, respectively.
(72) [1, Section 4.5] A 177×35 matrix A has 19 pivots. Find $\operatorname{dim} \operatorname{Nul} A, \operatorname{dim} \operatorname{Col} A$, dim Row A, and $\operatorname{rank} A$.

References

[1] David C. Lay. Linear Algebra and Its Applications. Addison-Wesley, 4th edition, 2012.

