Math 3130 - Assignment 7

Due March 4, 2016
Markus Steindl
(55) [1, Sections 4.3, 4.4] Let $B=\left(b_{1}, \ldots, b_{n}\right)$ be a basis for a vector space V and consider the coordinate mapping $V \rightarrow \mathbb{R}^{n}, x \mapsto[x]_{B}$.
(a) Show that $[c \cdot x]_{B}=c[x]_{B}$ for all $x \in V, c \in \mathbb{R}$.
(b) Show that the coordinate mapping is onto \mathbb{R}^{n}.

Solution:
(a) Let $x \in V$ with $x=c_{1} b_{1}+\ldots c_{n} b_{n}$ for $c_{1}, \ldots, c_{n} \in \mathbb{R}$. That is, $[x]_{B}=\left[\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right]$.

Let $c \in \mathbb{R}$ and consider

$$
c x=c\left(c_{1} b_{1}+\ldots c_{n} b_{n}\right)=c c_{1} b_{1}+\ldots c c_{n} b_{n} .
$$

Then the coordinates of $c x$ are

$$
[c x]_{B}=\left[\begin{array}{c}
c c_{1} \\
\vdots \\
c c_{n}
\end{array}\right]=c\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right]=c[x]_{B} .
$$

(b) To show the map is onto \mathbb{R}^{n}, let $y=\left[\begin{array}{c}y_{1} \\ \vdots \\ y_{n}\end{array}\right] \in \mathbb{R}^{n}$. We have to find $x \in V$ such that $[x]_{B}=y$. Pick $x=y_{1} b_{1}+\ldots y_{n} b_{n}$. This shows that the coordinate map is onto.
(56) [1, Section 4.2] Let \mathbb{P}_{2} be the vector space of polynomials of degree at most 2, and let $D: \mathbb{P}_{2} \rightarrow \mathbb{P}_{2}, f \mapsto f^{\prime}$, be the linear map that computes the derivative of a polynomial.
(a) Determine kernel and range of D.
(b) Is D injective, surjective, bijective?

Solution:

(a) The kernel of $D(\operatorname{ker} D$ or $\operatorname{Nul} D)$ is the set of all constant polynomials.

The range of D is $D\left(\mathbb{P}_{2}\right)=\mathbb{P}_{1}$. Note that differentiating a polynomial of degree 2 yields a polynomial of degree 1 . So $D\left(\mathbb{P}_{2}\right) \subseteq P_{1}$. Further every polynomial g of degree 1 is the derivative of a polynomial f of degree 2. Just integrate g to get f. So $D\left(\mathbb{P}_{2}\right) \supseteq P_{1}$ and hence $D\left(\mathbb{P}_{2}\right)=P_{1}$.
(b) D is not injective because $1^{\prime}=0=0^{\prime}$. Alternatively, all constant polynomials are mapped to the same function (the kernel is non-trivial).
D is not surjective (onto \mathbb{P}_{2}) because its range is $D\left(\mathbb{P}_{2}\right)=P_{1}$ and not \mathbb{P}_{2}. D is not bijective since it is neither injective nor surjective.
(57) [1, Section 4.3] Which of the following are bases of \mathbb{R}^{3} ? Why or why not?

$$
A=\left(\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]\right), B=\left(\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right],\left[\begin{array}{c}
0 \\
-1 \\
4
\end{array}\right]\right), C=\left(\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right)
$$

Solution:

A is not a basis because 2 vectors can at most span a plane but not all of \mathbb{R}^{3}.
To check whether B is a basis we have to see whether it spans \mathbb{R}^{3}. Row reduce

$$
\left[\begin{array}{ccc}
1 & 2 & 0 \\
2 & 3 & -1 \\
0 & 4 & 4
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & -1 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

Since we have a 0 -row, the vectors in B do not span \mathbb{R}^{3}. Hence B is not a basis.
To check whether C is a basis we have to see whether it spans \mathbb{R}^{3}. Row reduce

$$
\left[\begin{array}{lll}
1 & 2 & 0 \\
2 & 3 & 1 \\
0 & 4 & 4
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & -1 & 1 \\
0 & 0 & 8
\end{array}\right]
$$

The echelon form has no 0-row. So C spans \mathbb{R}^{3}. Further we see from the echelon form that C is linearly independent. So C is a basis.
(58) $[1$, Section 4.3] Give a basis for $\mathrm{Nul} A$ and a basis for $\mathrm{Col} A$ for

$$
A=\left[\begin{array}{cccc}
0 & 2 & 0 & 3 \\
1 & -4 & -1 & 0 \\
-2 & 6 & 2 & -3
\end{array}\right]
$$

Solution:

Nul A is the solution set of $A x=0$. So we row reduce A

$$
A=\left[\begin{array}{cccc}
0 & 2 & 0 & 3 \\
1 & -4 & -1 & 0 \\
-2 & 6 & 2 & -3
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & -4 & -1 & 0 \\
0 & 2 & 0 & 3 \\
0 & -2 & 0 & -3
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & -4 & -1 & 0 \\
0 & 2 & 0 & 3 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

to get the solution $x_{4}=t, x_{3}=s$ (both free), $x_{2}=-\frac{3}{2} t, x_{1}=s-6 t$. So

$$
x=s\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-6 \\
-\frac{3}{2} \\
0 \\
1
\end{array}\right] \text { and Nul } A \text { has basis }\left(\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-6 \\
-\frac{3}{2} \\
0 \\
1
\end{array}\right]\right)
$$

For a basis of the column space $\operatorname{Col} A$ we pick the pivot columns of A, i.e., the first and second column. So $\operatorname{Col} A$ has basis $\left(\left[\begin{array}{c}0 \\ 1 \\ -2\end{array}\right],\left[\begin{array}{c}2 \\ -4 \\ 6\end{array}\right]\right)$.
(59) [1, Section 4.3] Give 2 different bases for

$$
H=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right],\left[\begin{array}{c}
3 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
3 \\
4
\end{array}\right]\right\}
$$

Solution:

Row reduction yields

$$
\left[\begin{array}{ccc}
1 & 3 & -1 \\
1 & -1 & 3 \\
2 & 0 & 4
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 3 & -1 \\
0 & -4 & 4 \\
0 & 0 & 0
\end{array}\right]
$$

So the first 2 columns of the original matrix are pivot columns and form a basis of H.

$$
B_{1}=\left(\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right],\left[\begin{array}{c}
3 \\
-1 \\
0
\end{array}\right]\right)
$$

Recall that the order of basis vectors is important (coordinates!). So by flipping the vectors we get a different basis

$$
B_{2}=\left(\left[\begin{array}{c}
3 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]\right)
$$

Also note that any 2 columns of the matrix are linearly independent. So any 2 distinct vectors in any order out of $\left\{\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{c}3 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 3 \\ 4\end{array}\right]\right\}$ form a basis.
(60) [1, Section 4.3] Show that $\cos t, \cos 2 t$ are linearly independent in the vector space of real valued functions.

Solution:

Show that

$$
x_{1} \cos t+x_{2} \cos 2 t=0 \text { (the constant } 0 \text {-function) }
$$

has only the trivial solution $x_{1}=x_{2}=0$. Since this is an equation for functions, we want to look at it at various values. For $t=0, t=\pi / 2$, respectively, we get the equations

$$
\begin{array}{r}
x_{1} \cdot 1+x_{2} \cdot 1=0, \\
x_{1} \cdot 0+x_{2} \cdot(-1)=0 .
\end{array}
$$

This system only has the trivial solution. So $\cos t, \cos 2 t$ are linearly independent.
(61) [1, Section 4.3] Consider the vector space of functions $V=\operatorname{Span}\{\cos t, 2 \cos t, \cos 2 t, 3 \cos 2 t\}$. Give a basis for V.

Solution:

$2 \cos t$ is a linear combination of $\cos t$, and $3 \cos 2 t$ a linear combination of $\cos 2 t$. By the Spanning Set Theorem we do not need $2 \cos t, 3 \cos 2 t$ in the spanning set for V. Since the remaining vectors $\cos t, \cos 2 t$ are linearly independent by (60), they form a basis of V.
(62) $\left[1\right.$, Section 4.4] Let $B=\left(\left[\begin{array}{c}1 \\ -2\end{array}\right],\left[\begin{array}{c}-3 \\ 4\end{array}\right]\right)$ be a basis of \mathbb{R}^{2}.
(a) Give the change of coordinates matrix P_{B} from B to the standard basis $E=$ $\left(e_{1}, e_{2}\right)$.
(b) Find vectors $u, v \in \mathbb{R}^{2}$ with $[u]_{B}=\left[\begin{array}{l}0 \\ 1\end{array}\right],[v]_{B}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$.
(c) Compute the coordinates relative to B of $w=\left[\begin{array}{c}-2 \\ 4\end{array}\right]$ and $x=\left[\begin{array}{l}1 \\ 0\end{array}\right]$.

Solution:
(a) For P_{B} we put the vectors of B in the columns of a matrix,

$$
P_{B}=\left[\begin{array}{cc}
1 & -3 \\
-2 & 4
\end{array}\right]
$$

(b) $u=P_{B} \cdot[u]_{B}=\left[\begin{array}{c}-3 \\ 4\end{array}\right]$, the second vector in B $v=\left[\begin{array}{cc}1 & -3 \\ -2 & 4\end{array}\right] \cdot\left[\begin{array}{l}3 \\ 2\end{array}\right]=\left[\begin{array}{c}-3 \\ 2\end{array}\right]$
(c) To find $[w]_{B}$ we can solve $P_{B} \cdot[w]_{B}=w$ directly by row reduction. Alternatively, we can invert P_{B} and use the formula $[w]_{B}=P_{B}^{-1} \cdot w$.

$$
P_{B}^{-1}=\frac{1}{-2}\left[\begin{array}{ll}
4 & 3 \\
2 & 1
\end{array}\right]
$$

So

$$
\begin{gathered}
{[w]_{B}=\frac{1}{-2}\left[\begin{array}{ll}
4 & 3 \\
2 & 1
\end{array}\right] \cdot\left[\begin{array}{c}
-2 \\
4
\end{array}\right]=\left[\begin{array}{c}
-2 \\
0
\end{array}\right]} \\
{[x]_{B}=\frac{1}{-2}\left[\begin{array}{ll}
4 & 3 \\
2 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
-2 \\
-1
\end{array}\right]}
\end{gathered}
$$

(63) $\left[1\right.$, Sections 4.1-4.4] Let $B=\left(1, t, t^{2}\right)$ and $C=\left(1,1+t, 1+t+t^{2}\right)$ be bases of \mathbb{P}_{2}.
(a) Determine the polynomials p, q with $[p]_{B}=\left[\begin{array}{c}3 \\ 0 \\ -2\end{array}\right]$ and $[q]_{C}=\left[\begin{array}{c}3 \\ 0 \\ -2\end{array}\right]$.
(b) Compute $[r]_{B}$ and $[r]_{C}$ for $r=3+2 t+t^{2}$.

Solution:
(a) $p=3-2 t^{2}$,
$q=3 \cdot 1+0 \cdot(1+t)-2\left(1+t+t^{2}\right)=1-2 t-2 t^{2}$
(b) For the coordinates relative to B just take the coefficients of the polynomial: $[r]_{B}=\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$
For the coordinates relative to C consider the equation

$$
\begin{aligned}
r & =x_{1} \cdot 1+x_{2}(1+t)+x_{3}\left(1+t+t^{2}\right) \\
& =\left(x_{1}+x_{2}+x_{3}\right)+\left(x_{2}+x_{3}\right) t+x_{3} t^{2}
\end{aligned}
$$

Comparing the coefficients we obtain $x_{3}=1, x_{2}=1, x_{1}=1$. So $[r]_{C}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.

References

[1] David C. Lay. Linear Algebra and Its Applications. Addison-Wesley, 4th edition, 2012.

