Math 3130 - Assignment 7

Due March 4, 2016 Markus Steindl

- (55) [1, Sections 4.3, 4.4] Let $B = (b_1, \ldots, b_n)$ be a basis for a vector space V and consider the coordinate mapping $V \to \mathbb{R}^n, x \mapsto [x]_B$.
 - (a) Show that $[c \cdot x]_B = c[x]_B$ for all $x \in V, c \in \mathbb{R}$.
 - (b) Show that the coordinate mapping is onto \mathbb{R}^n .
- (56) [1, Section 4.2] Let \mathbb{P}_2 be the vector space of polynomials of degree at most 2, and let $D: \mathbb{P}_2 \to \mathbb{P}_2, f \mapsto f'$, be the linear map that computes the derivative of a polynomial. (a) Determine kernel and range of D.
 - (b) Is D injective, surjective, bijective?
- (57) [1, Section 4.3] Which of the following are bases of \mathbb{R}^3 ? Why or why not?

$$A = \begin{pmatrix} \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 2\\3\\4 \end{bmatrix}), B = \begin{pmatrix} \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 2\\3\\4 \end{bmatrix}, \begin{bmatrix} 0\\-1\\4 \end{bmatrix}), C = \begin{pmatrix} \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 2\\3\\4 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix})$$

(58) [1, Section 4.3] Give a basis for Nul A and a basis for Col A for

$$A = \begin{bmatrix} 0 & 2 & 0 & 3\\ 1 & -4 & -1 & 0\\ -2 & 6 & 2 & -3 \end{bmatrix}$$

(59) [1, Section 4.3] Give 2 different bases for

$$H = \operatorname{Span}\left\{ \begin{bmatrix} 1\\1\\2 \end{bmatrix}, \begin{bmatrix} 3\\-1\\0 \end{bmatrix}, \begin{bmatrix} -1\\3\\4 \end{bmatrix} \right\}$$

- (60) [1, Section 4.3] Show that $\cos t$, $\cos 2t$ are linearly independent in the vector space of real valued functions.
- (61) [1, Section 4.3] Consider the vector space of functions $V = \text{Span}\{\cos t, 2\cos t, \cos 2t, 3\cos 2t\}$. Give a basis for V.
- (62) [1, Section 4.4] Let $B = \begin{pmatrix} 1 \\ -2 \end{pmatrix}, \begin{pmatrix} -3 \\ 4 \end{pmatrix}$ be a basis of \mathbb{R}^2 .
 - (a) Give the change of coordinates matrix P_B from B to the standard basis E = $(e_1, e_2).$
 - (b) Find vectors $u, v \in \mathbb{R}^2$ with $[u]_B = \begin{bmatrix} 0\\1 \end{bmatrix}, [v]_B = \begin{bmatrix} 3\\2 \end{bmatrix}$.

(c) Compute the coordinates relative to B of $w = \begin{vmatrix} -2 \\ 4 \end{vmatrix}$ and $x = \begin{vmatrix} 1 \\ 0 \end{vmatrix}$.

(63) [1, Sections 4.1–4.4] Let $B = (1, t, t^2)$ and $C = (1, 1 + t, 1 + t + t^2)$ be bases of \mathbb{P}_2 . (a) Determine the polynomials p, q with $[p]_B = \begin{bmatrix} 3\\0\\-2 \end{bmatrix}$ and $[q]_C = \begin{bmatrix} 3\\0\\-2 \end{bmatrix}$.

(b) Compute $[r]_B$ and $[r]_C$ for $r = 3 + 2t + t^2$.

References

[1] David C. Lay. Linear Algebra and Its Applications. Addison-Wesley, 4th edition, 2012.