Math 3130 - Assignment 6

Due February 26, 2016 Markus Steindl

(46) Let $\mathbf{v}_1, \ldots, \mathbf{v}_n$ be vectors in a vector space V. Show that $H := \text{Span}\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ is a subspace of V.

Solution:

We show the 3 conditions for being a subspace.

- (1) The zero vector can be written as linear combination $\mathbf{0} = 0\mathbf{v}_1 + \ldots + 0\mathbf{v}_n$. Thus $\mathbf{0} \in H$.
- (2) Let \mathbf{u} and \mathbf{w} be arbitrary vectors in H. We can write these vectors as

$$\mathbf{u} = a_1 \mathbf{v}_1 + \ldots + a_n \mathbf{v}_n \quad \text{for some } a_1, \ldots, a_n \in \mathbb{R}, \\ \mathbf{w} = b_1 \mathbf{v}_1 + \ldots + b_n \mathbf{v}_n \quad \text{for some } b_1, \ldots, b_n \in \mathbb{R}.$$

Now

$$\mathbf{u} + \mathbf{w} = a_1 \mathbf{v}_1 + \ldots + a_n \mathbf{v}_n + b_1 \mathbf{v}_1 + \ldots + b_n \mathbf{v}_n$$
$$= (a_1 + b_1) \mathbf{v}_1 + \ldots + (a_n + b_n) \mathbf{v}_n.$$

Thus $\mathbf{u} + \mathbf{w}$ is spanned by $\mathbf{v}_1, \ldots, \mathbf{v}_n$ and hence an element of H.

(3) Let $\mathbf{u} \in H$ as above, and let $r \in \mathbb{R}$. Then

$$r\mathbf{u} = r(a_1\mathbf{v}_1 + \ldots + a_n\mathbf{v}_n)$$
$$= ra_1\mathbf{v}_1 + \ldots + ra_n\mathbf{v}_n.$$

Thus $r\mathbf{u}$ is spanned by $\mathbf{v}_1, \ldots, \mathbf{v}_n$ and hence an element of H.

(47) Let A be an $m \times n$ matrix. Prove that the Nullspace of A is a subspace of \mathbb{R}^n . Solution:

We show the 3 conditions for being a subspace.

- (1) The zero vector is clearly in Nul(A) since $A\mathbf{0} = \mathbf{0}$.
- (2) Let **u** and **w** be arbitrary vectors in Nul(A). Then $A\mathbf{u} = \mathbf{0}$ and $A\mathbf{w} = \mathbf{0}$. We show that $\mathbf{u} + \mathbf{w}$ is in Nul(A).

$$A(\mathbf{u} + \mathbf{w}) = A\mathbf{u} + A\mathbf{w} = \mathbf{0} + \mathbf{0} = \mathbf{0}.$$

So $\mathbf{u} + \mathbf{w}$ is in $\operatorname{Nul}(A)$.

(3) Let $r \in \mathbb{R}$. Then

$$A(r\mathbf{u}) = r(A\mathbf{u}) = r\mathbf{0} = \mathbf{0}.$$

Hence $r\mathbf{u}$ is in $\operatorname{Nul}(A)$.

(48) Let $M_{2\times 2}$ be the set of all 2×2 matrices. Let + be the sum of matrices and \cdot be the multiplication of a matrix by a scalar.

(a) Show that $M_{2\times 2}$ forms is a vector space. Solution:

(1)-(3) The sum of two matrices is a matrix, and the addition is commutative and associative.

- (4) The zero vector is the zero matrix $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. (5) If $\mathbf{u} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is a matrix, then $-\mathbf{u} = \begin{pmatrix} -a & -b \\ -c & -d \end{pmatrix}$. (6)–(10) follow from several theorems on matrices.
- (b) Let H be the set of invertible 2 × 2 matrices. Show that H is not a subspace of M_{2×2}.
 Solution:

(3 points) The zero vector $\mathbf{0} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ is not an invertible matrix. Thus $\mathbf{0} \notin H$, and hence H is not a subspace.

(49) Show that
$$V := \{ \begin{bmatrix} a \\ b \end{bmatrix} \mid a, b \in \mathbb{R}, a \ge 0 \}$$
 is no subspace of \mathbb{R}^2 .
Solution:

No. For example $\mathbf{u} = \begin{bmatrix} 1\\1 \end{bmatrix}$ is in V, but $(-1)\mathbf{u} = \begin{bmatrix} -1\\-1 \end{bmatrix}$ is not in V. \Box (50)

$$\mathbf{u} = \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} -1\\0\\2\\-1 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} 2\\-1\\5 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}, \quad A = \begin{bmatrix} 0 & 0 & 2 & 4\\2 & -4 & 1 & 0\\-3 & 6 & 2 & 7 \end{bmatrix}$$

(a) Which of the vectors u, v, w, x are in Nul A?Solution:

The vectors \mathbf{u} and \mathbf{v} are in Nul(A) since $A\mathbf{u} = \mathbf{0}$ and $A\mathbf{v} = \mathbf{0}$. Vectors \mathbf{w} and \mathbf{x} cannot be in Nul(A) since they do not have 4 entries.

(b) Which of the vectors u, v, w, x are in Col A?Solution:

$$\mathbf{w} = \begin{bmatrix} 2\\-1\\5 \end{bmatrix} = \begin{bmatrix} 2\\1\\2 \end{bmatrix} - \begin{bmatrix} 0\\2\\-3 \end{bmatrix},$$

w is spanned by the columns of A. Thus $\mathbf{w} \in \operatorname{Col}(A)$. Also $\mathbf{0} \in \operatorname{Col}(A)$. The vectors **u** and **v** cannot be in $\operatorname{Col}(A)$ since they have too many entries. \Box

- (51) Let A be the matrix from (50).
 - (a) Solve $A\mathbf{x} = \mathbf{0}$ and give the solution in parametric vector form.

Solution:

We solve $A\mathbf{x} = \mathbf{0}$ and reduce the augmented matrix:

Γ	0	0	2	4	0		1	-2	0	-1	0]	
	2	-4	1	0	0	$\sim \cdots \sim$	0	0	1	2	0	
	-3	6	2	7	0	$\sim \cdots \sim$	0	0	0	0	0	

The variables x_2 and x_4 are free. We obtain

$$x_1 = 2r + s$$
$$x_2 = r$$
$$x_3 = -2s$$
$$x_4 = s.$$

The solution in parametric vector form is

$$\mathbf{x} = r \begin{bmatrix} 2\\1\\0\\0 \end{bmatrix} + s \begin{bmatrix} 1\\0\\-2\\1 \end{bmatrix} \quad r,s \in \mathbb{R}$$

(b) Find vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^4$ such that $\operatorname{Nul} A = \{r\mathbf{u} + s\mathbf{v} \mid r, s \in \mathbb{R}\}$. Solution:

$$\mathbf{u} = \begin{bmatrix} 2\\1\\0\\0 \end{bmatrix}, \ \mathbf{v} = \begin{bmatrix} 1\\0\\-2\\1 \end{bmatrix}$$

- (52) Let $V := \{f : \mathbb{R} \to \mathbb{R}\}$ be the vector space of functions on \mathbb{R} .
 - (a) Is $\{f : \mathbb{R} \to \mathbb{R} \mid f(0) = 1\}$ a subspace of V? Solution:

No. The zero vector is the zero function. But the zero function is not 1 at position 0. So the zero vector does not belong to this set. \Box

(b) Is $\{f : \mathbb{R} \to \mathbb{R} \mid f(1) = 0\}$ a subspace of V? Solution:

Yes. (1) The set contains the zero function, which is the zero vector. (2) If two functions f and g are in the set, then (f + g)(1) = f(1) + g(1) = 0 + 0 = 0. Thus the function f + g is also in the set. (3) If f is in the set and $r \in \mathbb{R}$, then (rf)(1) = rf(1) = r0 = 0. Thus the function rf is also in the set. \Box

(c) Is $\{f : \mathbb{R} \to \mathbb{R} \mid f \text{ is continuous}\}$ a subspace of V? Solution:

Yes. (1) The zero function is continuous. (2) The sum of continuous functions is continuous. (3) The multiplication of a continuous function by a scalar is

continuous.

(53) Is $\{0\}$ a subspace of \mathbb{R}^n ? Solution:

Yes, all three conditions for being a subspace are fulfilled.

(

(54) Are the vectors $\mathbf{u} = 1$, $\mathbf{v} = t$, $\mathbf{w} = t^2$ in the vector space $V := \{f : \mathbb{R} \to \mathbb{R}\}$ linearly independent?

Solution:

Yes. We solve the system $x_1\mathbf{u} + x_2\mathbf{v} + x_3\mathbf{w} = \mathbf{0}$. This means we find all triples (x_1, x_2, x_3) such that

$$\forall t \in \mathbb{R} \colon x_1 \cdot 1 + x_2 \cdot t + x_3 \cdot t^2 = 0.$$

We pick values for t. For t = 0 we get

$$x_1 + 0 + 0 = 0.$$

Thus $x_1 = 0$. For t = 1 we get

$$0 + x_2 + x_3 = 0,$$

and for t = 2 we get

$$0 + 2x_2 + 4x_3 = 0.$$

This is a linear system with variables x_2, x_3 . The only solution is $x_2 = x_3 = 0$. Since also $x_1 = 0$, the vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are linearly independent.