Math 3130 - Assignment 6

Due February 26, 2016
Markus Steindl
(46) Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ be vectors in a vector space V. Show that $H:=\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a subspace of V.

Solution:

We show the 3 conditions for being a subspace.
(1) The zero vector can be written as linear combination $\mathbf{0}=0 \mathbf{v}_{1}+\ldots+0 \mathbf{v}_{n}$. Thus $\mathbf{0} \in H$.
(2) Let \mathbf{u} and \mathbf{w} be arbitary vectors in H. We can write these vectors as

$$
\begin{aligned}
\mathbf{u} & =a_{1} \mathbf{v}_{1}+\ldots+a_{n} \mathbf{v}_{n} \\
\mathbf{w} & =b_{1} \mathbf{v}_{1}+\ldots+b_{n} \mathbf{v}_{n}
\end{aligned} \text { for some } a_{1}, \ldots, a_{n} \in \mathbb{R}, ~ b_{1}, \ldots, b_{n} \in \mathbb{R} .
$$

Now

$$
\begin{aligned}
\mathbf{u}+\mathbf{w} & =a_{1} \mathbf{v}_{1}+\ldots+a_{n} \mathbf{v}_{n}+b_{1} \mathbf{v}_{1}+\ldots+b_{n} \mathbf{v}_{n} \\
& =\left(a_{1}+b_{1}\right) \mathbf{v}_{1}+\ldots+\left(a_{n}+b_{n}\right) \mathbf{v}_{n} .
\end{aligned}
$$

Thus $\mathbf{u}+\mathbf{w}$ is spanned by $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ and hence an element of H.
(3) Let $\mathbf{u} \in H$ as above, and let $r \in \mathbb{R}$. Then

$$
\begin{aligned}
r \mathbf{u} & =r\left(a_{1} \mathbf{v}_{1}+\ldots+a_{n} \mathbf{v}_{n}\right) \\
& =r a_{1} \mathbf{v}_{1}+\ldots+r a_{n} \mathbf{v}_{n} .
\end{aligned}
$$

Thus $r \mathbf{u}$ is spanned by $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ and hence an element of H.
(47) Let A be an $m \times n$ matrix. Prove that the Nullspace of A is a subspace of \mathbb{R}^{n}.

Solution:

We show the 3 conditions for being a subspace.
(1) The zero vector is clearly in $\operatorname{Nul}(A)$ since $A \mathbf{0}=\mathbf{0}$.
(2) Let \mathbf{u} and \mathbf{w} be arbitary vectors in $\operatorname{Nul}(A)$. Then $A \mathbf{u}=\mathbf{0}$ and $A \mathbf{w}=\mathbf{0}$. We show that $\mathbf{u}+\mathbf{w}$ is in $\operatorname{Nul}(A)$.

$$
A(\mathbf{u}+\mathbf{w})=A \mathbf{u}+A \mathbf{w}=\mathbf{0}+\mathbf{0}=\mathbf{0}
$$

So $\mathbf{u}+\mathbf{w}$ is in $\operatorname{Nul}(A)$.
(3) Let $r \in \mathbb{R}$. Then

$$
A(r \mathbf{u})=r(A \mathbf{u})=r \mathbf{0}=\mathbf{0} .
$$

Hence $r \mathbf{u}$ is in $\operatorname{Nul}(A)$.
(48) Let $M_{2 \times 2}$ be the set of all 2×2 matrices. Let + be the sum of matrices and \cdot be the multiplication of a matrix by a scalar.
(a) Show that $M_{2 \times 2}$ forms is a vector space.

Solution:

(1)-(3) The sum of two matrices is a matrix, and the addition is commutative and associative.
(4) The zero vector is the zero matrix $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$.
(5) If $\mathbf{u}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is a matrix, then $-\mathbf{u}=\left(\begin{array}{cc}-a & -b \\ -c & -d\end{array}\right)$.
(6)-(10) follow from several theorems on matrices.
(b) Let H be the set of invertible 2×2 matrices. Show that H is not a subspace of $M_{2 \times 2}$.
Solution:
(3 points) The zero vector $\mathbf{0}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ is not an invertible matrix. Thus $\mathbf{0} \notin H$, and hence H is not a subspace.
(49) Show that $V:=\left\{\left.\left[\begin{array}{l}a \\ b\end{array}\right] \right\rvert\, a, b \in \mathbb{R}, a \geq 0\right\}$ is no subspace of \mathbb{R}^{2}.

Solution:

No. For example $\mathbf{u}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is in V, but $(-1) \mathbf{u}=\left[\begin{array}{l}-1 \\ -1\end{array}\right]$ is not in V.

$$
\mathbf{u}=\left[\begin{array}{l}
0 \tag{50}\\
0 \\
0 \\
0
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{c}
-1 \\
0 \\
2 \\
-1
\end{array}\right], \quad \mathbf{w}=\left[\begin{array}{c}
2 \\
-1 \\
5
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right], \quad A=\left[\begin{array}{cccc}
0 & 0 & 2 & 4 \\
2 & -4 & 1 & 0 \\
-3 & 6 & 2 & 7
\end{array}\right]
$$

(a) Which of the vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x}$ are in $\operatorname{Nul} A$?

Solution:

The vectors \mathbf{u} and \mathbf{v} are in $\operatorname{Nul}(A)$ since $A \mathbf{u}=\mathbf{0}$ and $A \mathbf{v}=\mathbf{0}$. Vectors \mathbf{w} and \mathbf{x} cannot be in $\operatorname{Nul}(A)$ since they do not have 4 entries.
(b) Which of the vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x}$ are in $\operatorname{Col} A$?

Solution:

Since

$$
\mathbf{w}=\left[\begin{array}{c}
2 \\
-1 \\
5
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right]-\left[\begin{array}{c}
0 \\
2 \\
-3
\end{array}\right]
$$

\mathbf{w} is spanned by the columns of A. Thus $\mathbf{w} \in \operatorname{Col}(A)$. Also $\mathbf{0} \in \operatorname{Col}(A)$. The vectors \mathbf{u} and \mathbf{v} cannot be in $\operatorname{Col}(A)$ since they have too many entries.
(51) Let A be the matrix from (50).
(a) Solve $A \mathbf{x}=\mathbf{0}$ and give the solution in parametric vector form.

Solution:

We solve $A \mathbf{x}=\mathbf{0}$ and reduce the augmented matrix:

$$
\left[\begin{array}{cccc|c}
0 & 0 & 2 & 4 & 0 \\
2 & -4 & 1 & 0 & 0 \\
-3 & 6 & 2 & 7 & 0
\end{array}\right] \sim \cdots \sim\left[\begin{array}{cccc|c}
1 & -2 & 0 & -1 & 0 \\
0 & 0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The variables x_{2} and x_{4} are free. We obtain

$$
\begin{aligned}
x_{1} & =2 r+s \\
x_{2} & =r \\
x_{3} & =-2 s \\
x_{4} & =s .
\end{aligned}
$$

The solution in parametric vector form is

$$
\mathbf{x}=r\left[\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{c}
1 \\
0 \\
-2 \\
1
\end{array}\right] \quad r, s \in \mathbb{R}
$$

(b) Find vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{4}$ such that $\operatorname{Nul} A=\{r \mathbf{u}+s \mathbf{v} \mid r, s \in \mathbb{R}\}$.

Solution:

$$
\mathbf{u}=\left[\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right], \mathbf{v}=\left[\begin{array}{c}
1 \\
0 \\
-2 \\
1
\end{array}\right]
$$

(52) Let $V:=\{f: \mathbb{R} \rightarrow \mathbb{R}\}$ be the vector space of functions on \mathbb{R}.
(a) Is $\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f(0)=1\}$ a subspace of V ?

Solution:

No. The zero vector is the zero function. But the zero function is not 1 at position 0 . So the zero vector does not belong to this set.
(b) Is $\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f(1)=0\}$ a subspace of V ?

Solution:

Yes. (1) The set contains the zero function, which is the zero vector. (2) If two functions f and g are in the set, then $(f+g)(1)=f(1)+g(1)=0+0=0$. Thus the function $f+g$ is also in the set. (3) If f is in the set and $r \in \mathbb{R}$, then $(r f)(1)=r f(1)=r 0=0$. Thus the function $r f$ is also in the set.
(c) Is $\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f$ is continuous $\}$ a subspace of V ?

Solution:

Yes. (1) The zero function is continuous. (2) The sum of continuous functions is continuous. (3) The multiplication of a continuous function by a scalar is
continuous.
(53) Is $\{\mathbf{0}\}$ a subspace of \mathbb{R}^{n} ?

Solution:
Yes, all three conditions for being a subspace are fulfilled.
(54) Are the vectors $\mathbf{u}=1, \mathbf{v}=t, \mathbf{w}=t^{2}$ in the vector space $V:=\{f: \mathbb{R} \rightarrow \mathbb{R}\}$ linearly independent?

Solution:

Yes. We solve the system $x_{1} \mathbf{u}+x_{2} \mathbf{v}+x_{3} \mathbf{w}=\mathbf{0}$. This means we find all triples $\left(x_{1}, x_{2}, x_{3}\right)$ such that

$$
\forall t \in \mathbb{R}: x_{1} \cdot 1+x_{2} \cdot t+x_{3} \cdot t^{2}=0
$$

We pick values for t. For $t=0$ we get

$$
x_{1}+0+0=0 .
$$

Thus $x_{1}=0$. For $t=1$ we get

$$
0+x_{2}+x_{3}=0
$$

and for $t=2$ we get

$$
0+2 x_{2}+4 x_{3}=0
$$

This is a linear system with variables x_{2}, x_{3}. The only solution is $x_{2}=x_{3}=0$. Since also $x_{1}=0$, the vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are linearly independent.

