Math 3130 - Assignment 6

Due February 26, 2016
Markus Steindl
(46) Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ be vectors in a vector space V. Show that $H:=\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a subspace of V.
(47) Let A be an $m \times n$ matrix. Prove that the Nullspace of A is a subspace of \mathbb{R}^{n}.
(48) Let $M_{2 \times 2}$ be the set of all 2×2 matrices. Let + be the sum of matrices and \cdot be the multiplication of a matrix by a scalar.
(a) Show that $M_{2 \times 2}$ forms is a vector space.
(b) Let H be the set of invertible 2×2 matrices. Show that H is not a subspace of $M_{2 \times 2}$.
(49) Show that $V:=\left\{\left.\left[\begin{array}{l}a \\ b\end{array}\right] \right\rvert\, a, b \in \mathbb{R}, a \geq 0\right\}$ is no subspace of \mathbb{R}^{2}.
(50) (a) Which of the vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x}$ are in $\operatorname{Nul} A$?
(b) Which of the vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x}$ are in $\operatorname{Col} A$?

$$
\mathbf{u}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{c}
-1 \\
0 \\
2 \\
-1
\end{array}\right], \quad \mathbf{w}=\left[\begin{array}{c}
2 \\
-1 \\
5
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right], \quad A=\left[\begin{array}{cccc}
0 & 0 & 2 & 4 \\
2 & -4 & 1 & 0 \\
-3 & 6 & 2 & 7
\end{array}\right]
$$

(51) Let A be the matrix from (50).
(a) Solve $A \mathbf{x}=\mathbf{0}$ and give the solution in parametric vector form.
(b) Find vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{4}$ such that

$$
\operatorname{Nul} A=\{r \mathbf{u}+s \mathbf{v} \mid r, s \in \mathbb{R}\} .
$$

(52) Let $V:=\{f: \mathbb{R} \rightarrow \mathbb{R}\}$ be the vector space of functions on \mathbb{R}.
(a) Is $\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f(0)=1\}$ a subspace of V ?
(b) Is $\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f(1)=0\}$ a subspace of V ?
(c) Is $\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f$ is continuous $\}$ a subspace of V ?
(53) Is $\{\mathbf{0}\}$ a subspace of \mathbb{R}^{n} ?
(54) Are the vectors $\mathbf{u}=1, \mathbf{v}=t, \mathbf{w}=t^{2}$ in the vector space $V:=\{f: \mathbb{R} \rightarrow \mathbb{R}\}$ linearly independent?

