Math 3130 - Assignment 5

Due February 19, 2016 Markus Steindl

Please write problems (37), (38), (39) on a sheet of paper separate from the rest.

- (37) Prove the following part of the Invertible Matrix Theorem: Let A be an n×n-matrix. If C · A = I_n for some matrix C, then A · x = 0 has only the trivial solution. Solution:
 Assume CA = I.
 Let x ∈ ℝⁿ be a solution of Ax = 0.
 We multiply Ax = 0 by C from the left and obtain CAx = C0.
 Since CA = I and C0 = 0, we have Ix = 0. Now Ix = x yields x = 0.
 So Ax = 0 has only the trivial solution x = 0.
- (38) Prove the following part of the Invertible Matrix Theorem: Let A be an $n \times n$ -matrix. A is invertible iff A^T is invertible.

Solution:

(⇒) Assume A has an inverse B. That is AB = I and BA = I. By transposing the first equation we get $(AB)^T = I^T$. So $B^T A^T = I$. Similarly BA = I yields $A^T B^T = I$. Since $(B^T)A^T = I = A^T(B^T)$, the matrix B^T is the inverse for A^T . Thus A^T is invertible. (⇐) Next assume A^T is invertible and show A is invertible.

By the implication (\Rightarrow) that we just proved, we know that also $(A^T)^T$ is invertible. Since $(A^T)^T = A$, the matrix A is invertible.

(39) Assume that $T : \mathbb{R}^n \to \mathbb{R}^n, x \mapsto A \cdot x$ is bijective. Show that A is invertible. Hint: Use that T is onto \mathbb{R}^n and the Invertible Matrix Theorem. Solution:

Assume T is bijective. That is T is onto and one-to-one.

Since T is onto \mathbb{R}^n , for every $b \in \mathbb{R}^n$ there is $x \in \mathbb{R}^n$ such that T(x) = b. But that means that Ax = b has a solution for every $b \in \mathbb{R}^n$. By the Invertible Matrix Theorem this means that A is invertible.

(40) Are the following matrices invertible? You do not need to compute the inverse. Just argue why or why not.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 & -2 \\ 2 & 3 \end{bmatrix}, C = \begin{bmatrix} 2 & -2 & 1 \\ 0 & 0 & 0 \\ 4 & 2 & 3 \end{bmatrix}$$

Solution:

A cannot be invertible because it is not square.

B is invertible because $1 \cdot 3 - (-2)2 \neq 0$ or because the columns of B are linearly independent ...

C is not invertible because it contains a 0-row.

(41) Can a square matrix with 2 identical rows be invertible? Why or why not? Solution:

No, if 2 rows are equal, you can subtract one from the other. Then an echelon form of the matrix will have a 0-row and cannot be transformed to the identity matrix. \Box

(42) Are the following mappings invertible? If so, give their inverses.

(a)
$$f: \mathbb{R} \to \mathbb{R}^2, x \mapsto \begin{bmatrix} 2x \\ 3x \end{bmatrix}$$

(b) $g: \mathbb{R}^2 \to \mathbb{R}^2, \begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} 2x - 3y \\ -x + 2y \end{bmatrix}$
Solution:

Solution:

(a) f is not invertible because it's not surjective. The image of f is just a line, not all of \mathbb{R}^2 .

(b) g is invertible because its standard matrix $A = \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}$ has the inverse

$$A^{-1} = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$$

Then $g^{-1} \colon \mathbb{R}^2 \to \mathbb{R}^2, \begin{bmatrix} x \\ y \end{bmatrix} \mapsto A^{-1} \begin{bmatrix} x \\ y \end{bmatrix}.$

(43) Let T be the rotation of \mathbb{R}^2 around the origin by the angle φ counterclockwise. Is the standard matrix of T invertible? If so, write down a formula for T^{-1} . What is its geometric interpretation?

Solution:

The standard matrix of T is

$$A = \begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix}$$

and has the inverse

$$A^{-1} = \begin{bmatrix} \cos\varphi & \sin\varphi \\ -\sin\varphi & \cos\varphi \end{bmatrix}$$

Hence

$$T^{-1} \colon \mathbb{R}^2 \to \mathbb{R}^2, \begin{bmatrix} x \\ y \end{bmatrix} \mapsto A^{-1} \begin{bmatrix} x \\ y \end{bmatrix}$$

Geometrically, this is the rotation around the origin by the angle φ clockwise or $-\varphi$ counterclockwise.

- (44) Are the following true or false? Explain why.
 - (a) Assume A implies B and B implies C. Then A implies C. Solution:

True. Assume A implies B and B implies C. By definition this means if A is true, then B is true and if B is true, then C is true. Hence if A is true, we get

that C is true. Thus A implies C.

(b) A implies B and B implies A means that A is true whenever B is true, and A is false whenever B is false.

Solution:

True. B implies A means that A is true whenever B is true. On the other hand, if B is false, then A cannot be true by A implies B. So A is false. Hence A implies B and B implies A yields that A is true whenever B is true, and A is false whenever B is false.

Conversely assume that A is true whenever B is true, and A is false whenever B is false. Then B implies A and $\neg B$ implies $\neg A$. The latter is the same as A implies B by contraposition.

- (c) n is an even integer $\Leftrightarrow n + 1$ is an odd integer Solution: True. If n is even, then n + 1 is odd and conversely.
- (d) For $x, y \in \mathbb{R}$, xy = 0 iff x = 0 and y = 0. Solution: False. If xy = 0, then x = 0 OR y = 0 but not necessarily both.
- (45) Give the negations of the following statements:
 - (a) $A \Rightarrow B$
 - (b) If you do well on the homework, you'll pass the class.
 - (c) $A \Leftrightarrow B$
 - (d) $x \in \mathbb{R}$ has an inverse if and only if $x \neq 0$.

Solution:

- (a) $A \wedge \neg B$
- (b) You do well on the homework and still won't pass the class.
- (c) $A \Leftrightarrow \neg B, \neg A \Leftrightarrow B, (A \land \neg B) \lor (\neg A \land B)$
- (d) $x \in \mathbb{R}$ has an inverse if and only if x = 0.