Math 3130-Assignment 5

Due February 19, 2016
Markus Steindl
Please write problems (37), (38), (39) on a sheet of paper separate from the rest.
(37) Prove the following part of the Invertible Matrix Theorem: Let A be an $n \times n$-matrix. If $C \cdot A=I_{n}$ for some matrix C, then $A \cdot \mathbf{x}=\mathbf{0}$ has only the trivial solution.

Solution:

Assume $C A=I$.
Let $\mathrm{x} \in \mathbb{R}^{n}$ be a solution of $A \mathbf{x}=\mathbf{0}$.
We multiply $A \mathbf{x}=\mathbf{0}$ by C from the left and obtain $C A \mathbf{x}=C \mathbf{0}$.
Since $C A=I$ and $C \mathbf{0}=\mathbf{0}$, we have $I \mathbf{x}=\mathbf{0}$. Now $I \mathbf{x}=\mathbf{x}$ yields $\mathbf{x}=\mathbf{0}$.
So $A \mathbf{x}=\mathbf{0}$ has only the trivial solution $\mathbf{x}=\mathbf{0}$.
(38) Prove the following part of the Invertible Matrix Theorem: Let A be an $n \times n$-matrix. A is invertible iff A^{T} is invertible.
Solution:
(\Rightarrow) Assume A has an inverse B. That is $A B=I$ and $B A=I$.
By transposing the first equation we get $(A B)^{T}=I^{T}$. So $B^{T} A^{T}=I$.
Similarly $B A=I$ yields $A^{T} B^{T}=I$.
Since $\left(B^{T}\right) A^{T}=I=A^{T}\left(B^{T}\right)$, the matrix B^{T} is the inverse for A^{T}. Thus A^{T} is invertible.
(\Leftarrow) Next assume A^{T} is invertible and show A is invertible.
By the implication (\Rightarrow) that we just proved, we know that also $\left(A^{T}\right)^{T}$ is invertible. Since $\left(A^{T}\right)^{T}=A$, the matrix A is invertible.
(39) Assume that $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, x \mapsto A \cdot x$ is bijective. Show that A is invertible.

Hint: Use that T is onto \mathbb{R}^{n} and the Invertible Matrix Theorem.

Solution:

Assume T is bijective. That is T is onto and one-to-one.
Since T is onto \mathbb{R}^{n}, for every $b \in \mathbb{R}^{n}$ there is $x \in \mathbb{R}^{n}$ such that $T(x)=b$. But that means that $A x=b$ has a solution for every $b \in \mathbb{R}^{n}$. By the Invertible Matrix Theorem this means that A is invertible.
(40) Are the following matrices invertible? You do not need to compute the inverse. Just argue why or why not.

$$
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -1 & 2
\end{array}\right], B=\left[\begin{array}{cc}
1 & -2 \\
2 & 3
\end{array}\right], C=\left[\begin{array}{ccc}
2 & -2 & 1 \\
0 & 0 & 0 \\
4 & 2 & 3
\end{array}\right]
$$

Solution:

A cannot be invertible because it is not sqare.
B is invertible because $1 \cdot 3-(-2) 2 \neq 0$ or because the columns of B are linearly independent ...
C is not invertible because it contains a 0 -row.
(41) Can a square matrix with 2 identical rows be invertible? Why or why not?

Solution:

No, if 2 rows are equal, you can subtract one from the other. Then an echelon form of the matrix will have a 0 -row and cannot be transformed to the identity matrix.
(42) Are the following mappings invertible? If so, give their inverses.
(a) $f: \mathbb{R} \rightarrow \mathbb{R}^{2}, x \mapsto\left[\begin{array}{l}2 x \\ 3 x\end{array}\right]$
(b) $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},\left[\begin{array}{l}x \\ y\end{array}\right] \mapsto\left[\begin{array}{l}2 x-3 y \\ -x+2 y\end{array}\right]$

Solution:

(a) f is not invertible because it's not surjective. The image of f is just a line, not all of \mathbb{R}^{2}.
(b) g is invertible because its standard matrix $A=\left[\begin{array}{cc}2 & -3 \\ -1 & 2\end{array}\right]$ has the inverse

$$
A^{-1}=\left[\begin{array}{ll}
2 & 3 \\
1 & 2
\end{array}\right]
$$

Then $g^{-1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},\left[\begin{array}{l}x \\ y\end{array}\right] \mapsto A^{-1}\left[\begin{array}{l}x \\ y\end{array}\right]$.
(43) Let T be the rotation of \mathbb{R}^{2} around the origin by the angle φ counterclockwise. Is the standard matrix of T invertible? If so, write down a formula for T^{-1}. What is its geometric interpretation?

Solution:

The standard matrix of T is

$$
A=\left[\begin{array}{cc}
\cos \varphi & -\sin \varphi \\
\sin \varphi & \cos \varphi
\end{array}\right]
$$

and has the inverse

$$
A^{-1}=\left[\begin{array}{cc}
\cos \varphi & \sin \varphi \\
-\sin \varphi & \cos \varphi
\end{array}\right] .
$$

Hence

$$
T^{-1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},\left[\begin{array}{l}
x \\
y
\end{array}\right] \mapsto A^{-1}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Geometrically, this is the rotation around the origin by the angle φ clockwise or $-\varphi$ counterclockwise.
(44) Are the following true or false? Explain why.
(a) Assume A implies B and B implies C. Then A implies C.

Solution:

True. Assume A implies B and B implies C. By definition this means if A is true, then B is true and if B is true, then C is true. Hence if A is true, we get
that C is true. Thus A implies C.
(b) A implies B and B implies A means that A is true whenever B is true, and A is false whenever B is false.

Solution:

True. B implies A means that A is true whenever B is true. On the other hand, if B is false, then A cannot be true by A implies B. So A is false. Hence A implies B and B implies A yields that A is true whenever B is true, and A is false whenever B is false.
Conversely assume that A is true whenever B is true, and A is false whenever B is false. Then B implies A and $\neg B$ implies $\neg A$. The latter is the same as A implies B by contraposition.
(c) n is an even integer $\Leftrightarrow n+1$ is an odd integer

Solution:

True. If n is even, then $n+1$ is odd and conversely.
(d) For $x, y \in \mathbb{R}, x y=0$ iff $x=0$ and $y=0$.

Solution:

False. If $x y=0$, then $x=0$ OR $y=0$ but not necessarily both.
(45) Give the negations of the following statements:
(a) $A \Rightarrow B$
(b) If you do well on the homework, you'll pass the class.
(c) $A \Leftrightarrow B$
(d) $x \in \mathbb{R}$ has an inverse if and only if $x \neq 0$.

Solution:

(a) $A \wedge \neg B$
(b) You do well on the homework and still won't pass the class.
(c) $A \Leftrightarrow \neg B, \neg A \Leftrightarrow B,(A \wedge \neg B) \vee(\neg A \wedge B)$
(d) $x \in \mathbb{R}$ has an inverse if and only if $x=0$.

