Math 3130-Assignment 5

Due February 19, 2016

Markus Steindl
Please write problems (37), (38), (39) on a sheet of paper separate from the rest.
(37) Prove the following part of the Invertible Matrix Theorem: Let A be an $n \times n$-matrix. If $C \cdot A=I_{n}$ for some matrix C, then $A \cdot \mathbf{x}=\mathbf{0}$ has only the trivial solution.
(38) Prove the following part of the Invertible Matrix Theorem: Let A be an $n \times n$-matrix. A is invertible iff A^{T} is invertible.
(39) Assume that $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, x \mapsto A \cdot x$ is bijective. Show that A is invertible.

Hint: Use that T is onto \mathbb{R}^{n} and the Invertible Matrix Theorem.
(40) Are the following matrices invertible? You do not need to compute the inverse. Just argue why or why not.

$$
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -1 & 2
\end{array}\right], B=\left[\begin{array}{cc}
1 & -2 \\
2 & 3
\end{array}\right], C=\left[\begin{array}{ccc}
2 & -2 & 1 \\
0 & 0 & 0 \\
4 & 2 & 3
\end{array}\right]
$$

(41) Can a square matrix with 2 identical rows be invertible? Why or why not?
(42) Are the following mappings invertible? If so, give their inverses.
(a) $f: \mathbb{R} \rightarrow \mathbb{R}^{2}, x \mapsto\left[\begin{array}{l}2 x \\ 3 x\end{array}\right]$
(b) $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},\left[\begin{array}{l}x \\ y\end{array}\right] \mapsto\left[\begin{array}{l}2 x-3 y \\ -x+2 y\end{array}\right]$
(43) Let T be the rotation of \mathbb{R}^{2} around the origin by the angle φ counterclockwise. Is the standard matrix of T invertible? If so, write down a formula for T^{-1}. What is its geometric interpretation?
(44) Are the following true or false? Explain why.
(a) Assume A implies B and B implies C. Then A implies C.
(b) A implies B and B implies A means that A is true whenever B is true, and A is false whenever B is false.
(c) n is an even integer $\Leftrightarrow n+1$ is an odd integer
(d) For $x, y \in \mathbb{R}, x y=0$ iff $x=0$ and $y=0$.
(45) Give the negations of the following statements:
(a) $A \Rightarrow B$
(b) If you do well on the homework, you'll pass the class.
(c) $A \Leftrightarrow B$
(d) $x \in \mathbb{R}$ has an inverse if and only if $x \neq 0$.

