Math 3130 - Assignment 4

Due February 12, 2016
Markus Steindl
(28) Let $\mathbf{b}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, \mathbf{x} \mapsto\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 2\end{array}\right] \mathbf{x}$.
(a) Find the solution set of $T(\mathbf{x})=\mathbf{b}$ in parametric vector form.
(b) Give 2 vectors in \mathbb{R}^{3} which are mapped to \mathbf{b} by T, and give 2 vectors in \mathbb{R}^{3} which are not mapped to \mathbf{b} by T.
(29) Let T be as in (28) and let A be the standard matrix of T.
(a) Do the colums of A span \mathbb{R}^{2} ?
(b) Are the columns of A linearly independent?
(c) Is T injective? Is T surjective? Is T bijective?
(30) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be a linear map such that

$$
T\left(\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
2
\end{array}\right], T\left(\left[\begin{array}{l}
2 \\
3 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$

(a) Express $\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$ as linear combination of $\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]$ and $\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right]$.
(b) Use the linearity of T to find $T\left(\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]\right)$ and $T\left(\left[\begin{array}{c}0 \\ 1 \\ -3\end{array}\right]\right)$.
(31) Let $r, s \in \mathbb{R}$ and A, B be $m \times n$ matrices. Complete the proof of the following statement:

$$
(r+s)(A+B)=r A+s A+r B+s B
$$

Proof. Let $i \in\{1, \ldots, m\}$ and $j \in\{1, \ldots, n\}$. Then

$$
\begin{aligned}
((r+s)(A+B))_{i j} & = & \cdots & \\
& = & & \text { by rule }(\mathrm{b}) \\
& = & \cdots & \\
& = & \cdots & \text { by rule (a) } \\
& =(r A+s A+r B+s B)_{i j} & & \text { by rule }(\mathrm{b}) \\
& & & \text { rule (a) }
\end{aligned}
$$

Thus $(r+s)(A+B)=r A+s A+r B+s B$.
For the proof only use the following rules:
(a) $(C+D)_{i j}=C_{i j}+D_{i j}$ for all matrices C and D of the same size,
(b) $(t C)_{i j}=t C_{i j}$ for every scalar t and every matrix C.
(32) Let

$$
\mathbf{a}_{1}=\left[\begin{array}{l}
2 \\
0 \\
2
\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right], \mathbf{a}_{3}=\left[\begin{array}{l}
0 \\
2 \\
1
\end{array}\right], \mathbf{a}_{4}=\left[\begin{array}{c}
3 \\
-1 \\
1
\end{array}\right], \mathbf{b}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

(a) Find $x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{R}$ such that $x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+x_{3} \mathbf{a}_{3}+x_{4} \mathbf{a}_{4}=\mathbf{b}$. Verify your solution.
(b) Let $: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a linear mapping such that $T\left(\mathbf{a}_{1}\right)=10, T\left(\mathbf{a}_{2}\right)=6, T\left(\mathbf{a}_{3}\right)=8$, $T\left(\mathbf{a}_{4}\right)=26$. Compute $T(\mathbf{b})$.
(33) Let 0 be the 0 -matrix with size 2×2. Find 2×2 matrices $A \neq 0$ and $B \neq 0$ such that $A B=0$.
(34) (a) If possible, invert the following matrices:

$$
A=\left[\begin{array}{ll}
2 & -3 \\
4 & -9
\end{array}\right], \quad B=\left[\begin{array}{cc}
-3 & 2 \\
4 & -3
\end{array}\right]
$$

(b) For which $a \in \mathbb{R}$ can the following matrix be inverted? Compute the inverse of C.

$$
C=\left[\begin{array}{cc}
a-2 & 1 \\
4 & a
\end{array}\right]
$$

(35) If possible, invert the following matrix:

$$
D=\left[\begin{array}{ccc}
-3 & 2 & 4 \\
0 & 1 & -2 \\
1 & -3 & 4
\end{array}\right]
$$

(36) If possible, invert the following matrix:

$$
E=\left[\begin{array}{ccc}
1 & 0 & 3 \\
0 & 1 & 1 \\
-1 & 2 & -1
\end{array}\right]
$$

References

[1] David C. Lay. Linear Algebra and Its Applications. Addison-Wesley, 4th edition, 2012.

