Math 3130 - Assignment 4

Due February 12, 2016 Markus Steindl

(28) Let $\mathbf{b} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $T \colon \mathbb{R}^3 \to \mathbb{R}^2, \mathbf{x} \mapsto \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 2 \end{bmatrix} \mathbf{x}.$ (a) Find the solution set of $T(\mathbf{x}) = \mathbf{b}$ in parametric vector form. (b) Give 2 vectors in \mathbb{R}^3 which are mapped to **b** by T, and give 2 vectors in \mathbb{R}^3 which are not mapped to \mathbf{b} by T. (29) Let T be as in (28) and let A be the standard matrix of T. (a) Do the colums of A span \mathbb{R}^2 ? (b) Are the columns of A linearly independent? (c) Is T injective? Is T surjective? Is T bijective? (30) Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be a linear map such that $T\begin{pmatrix} 1\\2\\-1 \end{pmatrix} = \begin{bmatrix} 1\\2 \end{bmatrix}, T\begin{pmatrix} 2\\3\\1 \end{pmatrix} = \begin{bmatrix} -2\\1 \end{bmatrix}$ (a) Express $\begin{bmatrix} 1\\1\\2 \end{bmatrix}$ as linear combination of $\begin{bmatrix} 1\\2\\-1 \end{bmatrix}$ and $\begin{bmatrix} 2\\3\\1 \end{bmatrix}$. (b) Use the linearity of T to find $T\begin{pmatrix} 1\\1\\2 \end{pmatrix}$ and $T\begin{pmatrix} 0\\1\\-3 \end{pmatrix}$). (31) Let $r, s \in \mathbb{R}$ and A, B be $m \times n$ matrices. Complete the proof of the following statement: (r+s)(A+B) = rA + sA + rB + sB*Proof.* Let $i \in \{1, \ldots, m\}$ and $j \in \{1, \ldots, n\}$. Then $((r+s)(A+B))_{ii} =$ by rule (b) by rule (a) . . . by distributivity of real numbers by rule (b) $= (rA + sA + rB + sB)_{ii}$ by rule (a) Thus (r+s)(A+B) = rA + sA + rB + sB.

For the proof only use the following rules:

(a) $(C+D)_{ij} = C_{ij} + D_{ij}$ for all matrices C and D of the same size,

- (b) $(tC)_{ij} = tC_{ij}$ for every scalar t and every matrix C.
- (32) Let

$$\mathbf{a}_1 = \begin{bmatrix} 2\\0\\2 \end{bmatrix}, \ \mathbf{a}_2 = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \ \mathbf{a}_3 = \begin{bmatrix} 0\\2\\1 \end{bmatrix}, \ \mathbf{a}_4 = \begin{bmatrix} 3\\-1\\1 \end{bmatrix}, \ \mathbf{b} = \begin{bmatrix} 1\\1\\0 \end{bmatrix}$$

(a) Find $x_1, x_2, x_3, x_4 \in \mathbb{R}$ such that $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + x_3\mathbf{a}_3 + x_4\mathbf{a}_4 = \mathbf{b}$. Verify your solution.

- (b) Let $: \mathbb{R}^3 \to \mathbb{R}$ be a linear mapping such that $T(\mathbf{a}_1) = 10$, $T(\mathbf{a}_2) = 6$, $T(\mathbf{a}_3) = 8$, $T(\mathbf{a}_4) = 26$. Compute $T(\mathbf{b})$.
- (33) Let 0 be the 0-matrix with size 2×2 . Find 2×2 matrices $A \neq 0$ and $B \neq 0$ such that AB = 0.
- (34) (a) If possible, invert the following matrices:

$$A = \begin{bmatrix} 2 & -3 \\ 4 & -9 \end{bmatrix}, \quad B = \begin{bmatrix} -3 & 2 \\ 4 & -3 \end{bmatrix}$$

(b) For which $a \in \mathbb{R}$ can the following matrix be inverted? Compute the inverse of C.

$$C = \begin{bmatrix} a-2 & 1\\ 4 & a \end{bmatrix}$$

(35) If possible, invert the following matrix:

$$D = \begin{bmatrix} -3 & 2 & 4\\ 0 & 1 & -2\\ 1 & -3 & 4 \end{bmatrix}$$

(36) If possible, invert the following matrix:

$$E = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 1 \\ -1 & 2 & -1 \end{bmatrix}$$

References

[1] David C. Lay. Linear Algebra and Its Applications. Addison-Wesley, 4th edition, 2012.