Math 3130 - Assignment 2

Due January 29, 2016 Markus Steindl

(10) [1, Section 1.4, Ex 17] How many rows of A contain a pivot position? Does the equation $A\mathbf{x} = \mathbf{b}$ have a solution for each $\mathbf{b} \in \mathbb{R}^4$?

$$A = \begin{bmatrix} 1 & 3 & 0 & 3\\ -1 & -1 & -1 & -1\\ 0 & -4 & 2 & -8\\ 2 & 0 & 3 & -1 \end{bmatrix}$$

- (11) [1, Section 1.4, Ex 31] Let A be a 3×2 matrix. Explain why the equation $A\mathbf{x} = \mathbf{b}$ cannot be consistent for all $\mathbf{b} \in \mathbb{R}^n$.
- (12) Let $\mathbf{u} \in \mathbb{R}^n$ be a vector and let $c, d \in \mathbb{R}$ be scalars. Show that

$$(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$$

(13) [1, cf. Section 1.5, Ex 17] Let

$$A = \begin{bmatrix} 2 & 2 & 4 \\ -4 & -4 & -8 \\ 0 & -3 & -3 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 8 \\ -16 \\ 12 \end{bmatrix}, \quad \mathbf{0} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Solve the equations $A\mathbf{x} = \mathbf{b}$ and $A\mathbf{x} = \mathbf{0}$. Express both solution sets in parametric vector form. Give a geometric description of the solution sets.

(14) [1, cf. Section 1.5, Ex 11] Let

$$A = \begin{bmatrix} 1 & -4 & -2 & 0 & 3 & -5 \\ 0 & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & -4 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{0} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Solve the equations $A\mathbf{x} = \mathbf{b}$ and $A\mathbf{x} = \mathbf{0}$. Express both solution sets in parametric vector form.

- (15) [1, Section 1.5, Ex 31] Let A be a 3×2 matrix with 2 pivot positions.
 - (a) Does the equation $A\mathbf{x} = \mathbf{0}$ have a nontrivial solution?

(b) Does the equation $A\mathbf{x} = \mathbf{b}$ have a solution for every possible $\mathbf{b} \in \mathbb{R}^3$? Explain your answers!

(16) [1, Section 1.7, Ex 9] Let

$$\mathbf{u} = \begin{bmatrix} 1\\ -3\\ 2 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} -3\\ 9\\ -6 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} 5\\ -7\\ h \end{bmatrix}.$$

- (a) For which values of h is **w** in Span{ \mathbf{u}, \mathbf{v} }?
- (b) For which values of h is $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ linearly dependent?
- (17) [1, cf. Section 1.7, Ex 21] Mark each statement True or False, and justify each answer. (a) The columns of a matrix A are linearly independent if $\mathbf{x} = \mathbf{0}$ is a solution of
 - $A\mathbf{x} = \mathbf{0}.$
 - (b) If $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly dependent, then each vector is a linear combination of the other two vectors.
 - (c) The columns of any 4×5 matrix are linearly dependent.

- (d) If \mathbf{u} and \mathbf{v} are linearly independent, and if $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly dependent, then \mathbf{w} is in the span of \mathbf{u}, \mathbf{v} .
- (18) Show the following Theorem in 2 steps: Suppose $A\mathbf{x} = \mathbf{b}$ has a solution \mathbf{p} . Then the set of all solutions of $A\mathbf{x} = \mathbf{b}$ is

 $\mathbf{p} + \operatorname{NullSpace} A = \{ \mathbf{p} + \mathbf{v} \mid \mathbf{v} \in \operatorname{NullSpace} A \}.$

Suppose $A\mathbf{x} = \mathbf{b}$ has a solution \mathbf{p} .

- (a) Show that if \mathbf{v} is in NullSpace A, then $\mathbf{p} + \mathbf{v}$ is also a solution for $A\mathbf{x} = \mathbf{b}$.
- (b) Show that if \mathbf{q} is a solution for $A\mathbf{x} = \mathbf{b}$, then $\mathbf{q} \mathbf{p}$ is in NullSpace A.

References

[1] David C. Lay. Linear Algebra and Its Applications. Addison-Wesley, 4th edition, 2012.