Math 3130 - Assignment 2

Due January 29, 2016
Markus Steindl
(10) [1, Section 1.4, Ex 17] How many rows of A contain a pivot position? Does the equation $A \mathbf{x}=\mathbf{b}$ have a solution for each $\mathbf{b} \in \mathbb{R}^{4}$?

$$
A=\left[\begin{array}{cccc}
1 & 3 & 0 & 3 \\
-1 & -1 & -1 & -1 \\
0 & -4 & 2 & -8 \\
2 & 0 & 3 & -1
\end{array}\right]
$$

(11) $[1$, Section 1.4 , Ex 31] Let A be a 3×2 matrix. Explain why the equation $A \mathbf{x}=\mathbf{b}$ cannot be consistent for all $\mathbf{b} \in \mathbb{R}^{n}$.
(12) Let $\mathbf{u} \in \mathbb{R}^{n}$ be a vector and let $c, d \in \mathbb{R}$ be scalars. Show that

$$
(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}
$$

(13) [1, cf. Section 1.5, Ex 17] Let

$$
A=\left[\begin{array}{ccc}
2 & 2 & 4 \\
-4 & -4 & -8 \\
0 & -3 & -3
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
8 \\
-16 \\
12
\end{array}\right], \quad \mathbf{0}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

Solve the equations $A \mathbf{x}=\mathbf{b}$ and $A \mathbf{x}=\mathbf{0}$. Express both solution sets in parametric vector form. Give a geometric description of the solution sets.
(14) [1, cf. Section 1.5, Ex 11] Let

$$
A=\left[\begin{array}{cccccc}
1 & -4 & -2 & 0 & 3 & -5 \\
0 & 0 & 1 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 1 & -4
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \quad \mathbf{0}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Solve the equations $A \mathbf{x}=\mathbf{b}$ and $A \mathbf{x}=\mathbf{0}$. Express both solution sets in parametric vector form.
(15) [1, Section 1.5, Ex 31] Let A be a 3×2 matrix with 2 pivot positions.
(a) Does the equation $A \mathbf{x}=\mathbf{0}$ have a nontrivial solution?
(b) Does the equation $A \mathbf{x}=\mathbf{b}$ have a solution for every possible $\mathbf{b} \in \mathbb{R}^{3}$?

Explain your answers!
(16) $[1$, Section 1.7, Ex 9] Let

$$
\mathbf{u}=\left[\begin{array}{c}
1 \\
-3 \\
2
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{c}
-3 \\
9 \\
-6
\end{array}\right], \quad \mathbf{w}=\left[\begin{array}{c}
5 \\
-7 \\
h
\end{array}\right] .
$$

(a) For which values of h is \mathbf{w} in $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$?
(b) For which values of h is $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ linearly dependent?
(17) [1, cf. Section 1.7, Ex 21] Mark each statement True or False, and justify each answer.
(a) The columns of a matrix A are linearly independent if $\mathbf{x}=\mathbf{0}$ is a solution of $A \mathrm{x}=0$.
(b) If $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly dependent, then each vector is a linear combination of the other two vectors.
(c) The columns of any 4×5 matrix are linearly dependent.
(d) If \mathbf{u} and \mathbf{v} are linearly independent, and if $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly dependent, then \mathbf{w} is in the span of \mathbf{u}, \mathbf{v}.
(18) Show the following Theorem in 2 steps: Suppose $A \mathbf{x}=\mathbf{b}$ has a solution \mathbf{p}. Then the set of all solutions of $A \mathbf{x}=\mathbf{b}$ is

$$
\mathbf{p}+\text { NullSpace } A=\{\mathbf{p}+\mathbf{v} \mid \mathbf{v} \in \text { NullSpace } A\} .
$$

Suppose $A \mathbf{x}=\mathbf{b}$ has a solution \mathbf{p}.
(a) Show that if \mathbf{v} is in NullSpace A, then $\mathbf{p}+\mathbf{v}$ is also a solution for $A \mathbf{x}=\mathbf{b}$.
(b) Show that if \mathbf{q} is a solution for $A \mathbf{x}=\mathbf{b}$, then $\mathbf{q}-\mathbf{p}$ is in NullSpace A.

References

[1] David C. Lay. Linear Algebra and Its Applications. Addison-Wesley, 4th edition, 2012.

