Non-Parametric Integrals:

- These are standard double and triple integrals where no Parametrization is needed.

General Facts

- Compute as an iterated integral
- For nice f, we can change the order of integration.
- The final output of the integral should be a number CNO VARIABLES!
- Jacobians show up when we change coordinates (rdrdo, posin dpd ddd, etc.)

Double Integrals:

- Usually use cartesian (x, y) or pelar (r, o) coordinates.
- Common applications.
 - Let R be a region in the xy-plane.
 - II I dA gives the area of R.
 - $\iint_{B} f(x,y) dA$ gives the volume of the 3D region above R below f(x,y). If f(x,y) <0, this counts as negative volume.
 - If p(x,y) gives the density of a langua at (x,y),

 $M = \iint_{\Omega} D(X,Y) dA$ is the mass of the lamber

 $M_x = \iint_{\mathbb{R}} y p(x,y) dA$ is the moment of mess about the x-axis,

My = SSR xp(x,y) dA is the moment of ners about the y-axis,

and $\left(\frac{M_Y}{M_J}, \frac{M_X}{M}\right) = \left(\bar{x}, \bar{y}\right)$ is the controld of the lamba.

-Note: $\iint_{R} 1 dA$ gives an area, but $\iint_{R} f(x, y) dA$ gives a volume, which makes sense (ignoring units) because the area of R and the volume of the solid above R with height I are the same.

Integrals: Triple

- usually Cartesian (x, y, z), spherical (p, ϕ, θ) , or cylindrical (r, θ, z) coordinates.
- Common applications:
 - SSSE I dV gives the volume of E.
 - For a density p(x,y,z), $\iiint_E p(x,y,z) dV$ gives the mass of the solid E. - Centroids can also be found like in 2-dinensions.

Tips:

- If possible, draw your region to help change the order of integration.
- Menorize the common Jacobians to save time.

Parametric Integrals:

- Includes line and surface integrals
- Both require a choice of parametrization.

Line Integrals:

- We want to integrate a function or vector field along a curve C.

Scalar Line Integrals:

- -An example to keep in mind is [p(x,y,z) ds, where C is the path traced out by a wire and p(x,y,z) is the density Of the wire at (x,y,z). Then $\int_{C} \mathcal{P}(x,y,z) ds$ gives the mass of the wire. Like in Calc.l, we can think of Scalar line sategrals as "adding up" a function along a curve.
- Computing f ds:
 - The farametrize C as $\vec{r}(t) = \langle x(t), y(t) \rangle$ or $\vec{r}(t) = \langle x(t), y(t), z(t) \rangle$ with a = t=b (Bounds are required!). There are usually several reasonable choices for P(t).
 - @ Find $|\vec{r}'(t)|$ and $f(\vec{r}(t)) = f(x(t), y(t), Z(t))$.
 - (3) Evaluate Ja f(r(t)) |r'(t)| dt.

Vector Line Integrals:

- An example to keep in mind is I F.dr, where F(x, x, z) is the force at (X,Y,Z) (force has a magnitude and a direction, so it is a vector) and C is a path. Then [Fodi is the work done by travelling along C. We can think of J. F. dr as adding up the amount of F pointing in the same direction as C along C.
- Computing [F.dr:
 - with a = t=b (Bounds are required!). There are usually several reasonable choices for P(2).
 - (2) Find $\vec{F}(\vec{r}(t)) = \vec{F}(x(t), y(t), Z(t))$ and $\vec{r}'(t)$. Evaluate

Scalar function of t.

3) Evaluate (F(T(t)) · F'(t) dt.

Surface Integrals:

- We want to integrate a scalar function or vector field over a surface S in 3-dimensional space.

Scalar Surface Integrals:

- $\iint_{S} f(x,y,z) dS$ "adds up" fover the surface S.
- Computing $\iint_{C} f(x,y,z) dS$:
 - O Parametrize S as $\vec{r}(u,v) = \langle x(u,v), y(u,v), z(u,v) \rangle$ with u,v in a bounded region D (You must specify D!)

 - 3 Evaluate Sp firm, vi) 12 x rv 1 dA, which is a regular double integral.

Vector Surface Integrals:

- -An example to keep in mind is $\iint_S \rho(x,y,z) \vec{V}(x,y,z) \cdot d\vec{S}$, where $\rho(x,y,z)$ is the density of a fluid at (x,y,z) and $\vec{V}(x,y,z)$ is the velocity of the fluid at (x,y,z). Then $\iint_S \rho \vec{v} \cdot d\vec{s}$ is the rate of flow of liquid through the surface S. We can think of $\iint_S \vec{F} \cdot d\vec{s}$ as adding up the anomat of \vec{F} perpendicular to S.
- In order to compute $\iint_S \vec{F} \cdot d\vec{S}$, we need a way to decide what is positive flow and what is negative flow. This is called an orientation. This is a choice of a unit normal vector at every point of S. Unless otherwise Stated, assume outward is positive for closed surfaces and up is positive for not closed surfaces.
- Computins Sc F.ds:
 - () Parametrize S as r(u,v) = < x(u,v), y(u,v), Z(u,v) for (u,v) in a donasa D

 (You must state what D is!)
 - (a) Compute $\vec{V} = \vec{\Gamma}_u \times \vec{\Gamma}_v$. If \vec{V} points in the same direction as your orientation, good. If not, use $\vec{V} = -(\vec{\Gamma}_u \times \vec{\Gamma}_v)$. (Always Check the orientation!)
 - (3) Compute F(F(u,v)) = F(x(u,v), y(u,v), z(u,v)) and F(F(u,v)). V.
 - (y) Evaluate $\iint_{D} \vec{F}(\vec{r}(u,v)) \cdot \vec{v} dA = \pm \iint_{D} \vec{F}(\vec{r}(u,v)) \cdot (\vec{r}_{u} \times \vec{r}_{v}) dA$

Integral Theorems:

- All of the integral theorems will have roughly the following form:

Tategral over a curve a Sur face a Volume

Integral over the boundary of a curve (two points) a surface (a curve) a volume (a surface)

- A region is called bounded if it can be put into a big enough box.
- A region is connected if it only has one piece.
- A region is simply connected if it only has one piece and has no holes.

Connected

Connected, but not simply connected

Theorems for Line Integrals:

- A vector field F is called conservative if F = Df for some f. We call f a potential function for F.

(Curl F=0, & F. dr =0 for all C, F conservative > (F is path independent, F has a potential function.

The other direction is not always true!

If the domain of F is open and simply connected, then

- Uses: If carl $\vec{F} \neq \vec{0}$, then \vec{F} is not conservative.

If the domain of \vec{F} is open and simply connected and curl $\vec{F} = \vec{O}$, then \vec{F} is conservative.

- Why do we care?

- If \vec{F} is conservative and C is a closed curve, then $\oint_C \vec{F} \cdot d\vec{r} = 0$ and we don't have to integrate.

- If \(\vec{\varphi} is conservative and \(\cappa is a complicated curve, \)

We can choose a new curve Co with the same

Endpoints and \(\vec{\varphi} \cdot d\vec{\varphi} = \int \vec{\varphi} \cdot d\vec{\varphi} \cdot \vec{\varphi} \vec{\varphi} d\vec{\varphi} = \int \vec{\varphi} \cdot d\vec{\varphi} \cdot \vec{\varphi} \vec{\va

The Fundamental Theorem of Line Integrals: (20 and 30)

The Fis conservative and we can find a potential function f, that is, $\dot{F} = \nabla f$, then for a curve C with starting point a and ending point b,

Integral Theorems Involving Surfaces and Volumes:

Green's Theorem: (LD)

If C is a simple closed curve in the plane and D is the region surrounded by C_{j} then for functions P(x,y) and Q(x,y),

Region in the plane:

The boundary of 0:

Fill in D and

Note: Both theorems have extra conditions.

Read the book for exact statements.

Stokes Theorem.

-If S is an oriented surface with simple, closed, positively uriented boundary curve C, and F is a nice vector field, then

- A tricky use:

If S, is a surface with boundary curve C and Sz is another surface with the same boundary, then

$$\iint_{S_{1}} |car| |\vec{F} \cdot d\vec{S}| = \iint_{S_{2}} |car| |\vec{F} \cdot d\vec{S}|,$$

50, if we know our vector field is the curl of something, we can change surfaces as long as the boundary is fixed.

Divergence Theorem:

If E is a simple solid region with boundary surface 5, which we orient outward, and if F is a "nice" vector field, then