Math 4001-5001: HW8

Due Friday, 11/01/2019

Problem 8.1 Let f be a continuous function on $[0,1]$. Prove whether or not the following limit exists. If it exists, find the limit.

$$
\lim _{n \rightarrow \infty} n \int_{0}^{1} x^{n} f(x) d x
$$

Problem 8.2 Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. Show if f is differentiable at $x_{0} \in \mathbb{R}^{n}$, then f is continuous at x_{0}.
Problem 8.3 p. $239 \# 6$.
Problem 8.4 The purpose of this problem is to make a connection between the Chain Rule in Calculus III and the Chain Rule in our class. All functions are assumed to be differentiable.
In the case of $f: \mathbb{R} \rightarrow \mathbb{R}, g: \mathbb{R} \rightarrow \mathbb{R}$, and $F(x)=g(f(x))$, from Calculus I we have, $F^{\prime}(x)=g^{\prime}(f(x)) f^{\prime}(x)$, and this agrees exactly with the Chain Rule in Theorem 9.15, when for fixed x, the 1D derivative is thought of as a linear transformation from \mathbb{R} to \mathbb{R}. Now consider higher dimensional cases (Hint: use Theorem 9.17):
a. $r: \mathbb{R} \rightarrow \mathbb{R}^{2}, f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, so $r(t)=(x(t), y(t))$ and $f(x, y) \in \mathbb{R}$. Now let

$$
F(t)=(f \circ r)(t)
$$

From Calculus III, we have

$$
\begin{equation*}
\frac{d F}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t} \tag{1}
\end{equation*}
$$

Let f^{\prime} and r^{\prime} be the total derivatives of f and r, respectively, and show (1) is equivalent to $f^{\prime}(r(t)) r^{\prime}(t)$.
b. $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, g: \mathbb{R}^{2} \rightarrow \mathbb{R}$, so $f(x, y)=(r(x, y), \theta(x, y))$ and $g(r, \theta) \in \mathbb{R}$. Now let

$$
u(x, y)=(g \circ f)(x, y)=g(r(x, y), \theta(x, y))
$$

From Calculus III, we have (finish the statements):

$$
\begin{align*}
& \frac{\partial u}{\partial x}=\frac{\partial g}{\partial r} \ldots . \tag{2}\\
& \frac{\partial u}{\partial y}= \tag{3}
\end{align*}
$$

Let f^{\prime} and g^{\prime} be the total derivatives of f and g, respectively, and show (2)-(3) are equivalent to $g^{\prime}(f(x, y)) f^{\prime}(x, y)$.

Extra Problem

Let X, Y be two normed vector spaces, and $A \in L(X, Y)$. Let $\|A\|=\sup _{x \neq 0} \frac{\|A x\|_{Y}}{\|x\|_{X}}$.
a) Let $\|A\|<\infty$. Show

$$
\|A\|=\sup _{\|x\|_{X} \leq 1}\|A x\|_{Y}=\sup _{\|x\|_{X}=1}\|A x\|_{Y}=\inf \lambda
$$

where λ satisfies $\|A x\|_{Y} \leq \lambda\|x\|_{X}$.
b) Show if $A \in L\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$, then $\|A\|<\infty$.
c) Let $B(X, Y)=\{A \in L(X, Y):\|A\|<\infty\}$. Show $\|\cdot\|$ is a norm on $B(X, Y)$.

