Math 4001-5001: HW8

Due Friday, 11/01/2019

Problem 8.1 Let f be a continuous function on [0, 1]. Prove whether or not the following limit exists. If it exists, find the limit.

$$\lim_{n \to \infty} n \int_0^1 x^n f(x) dx.$$

Problem 8.2 Let $f : \mathbb{R}^n \to \mathbb{R}^m$. Show if f is differentiable at $x_0 \in \mathbb{R}^n$, then f is continuous at x_0 .

Problem 8.3 p. 239 # 6.

Problem 8.4 The purpose of this problem is to make a connection between the Chain Rule in Calculus III and the Chain Rule in our class. All functions are assumed to be differentiable.

In the case of $f : \mathbb{R} \to \mathbb{R}$, $g : \mathbb{R} \to \mathbb{R}$, and F(x) = g(f(x)), from Calculus I we have, F'(x) = g'(f(x))f'(x), and this agrees exactly with the Chain Rule in Theorem 9.15, when for fixed x, the 1D derivative is thought of as a linear transformation from \mathbb{R} to \mathbb{R} . Now consider higher dimensional cases (Hint: use Theorem 9.17):

a. $r: \mathbb{R} \to \mathbb{R}^2, f: \mathbb{R}^2 \to \mathbb{R}$, so r(t) = (x(t), y(t)) and $f(x, y) \in \mathbb{R}$. Now let

$$F(t) = (f \circ r)(t).$$

From Calculus III, we have

$$\frac{dF}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}.$$
(1)

Let f' and r' be the total derivatives of f and r, respectively, and show (1) is equivalent to f'(r(t))r'(t).

b. $f: \mathbb{R}^2 \to \mathbb{R}^2, g: \mathbb{R}^2 \to \mathbb{R}$, so $f(x, y) = (r(x, y), \theta(x, y))$ and $g(r, \theta) \in \mathbb{R}$. Now let

$$u(x,y) = (g \circ f)(x,y) = g(r(x,y),\theta(x,y))$$

From Calculus III, we have (finish the statements):

$$\frac{\partial u}{\partial x} = \frac{\partial g}{\partial r} \dots$$
(2)

$$\frac{\partial u}{\partial u} =$$
 (3)

Let f' and g' be the total derivatives of f and g, respectively, and show (2)-(3) are equivalent to g'(f(x,y))f'(x,y).

Extra Problem

Let X, Y be two normed vector spaces, and $A \in L(X, Y)$. Let $||A|| = \sup_{x \neq 0} \frac{||Ax||_Y}{||x||_X}$.

a) Let $||A|| < \infty$. Show

$$||A|| = \sup_{||x||_X \le 1} ||Ax||_Y = \sup_{||x||_X = 1} ||Ax||_Y = \inf \lambda,$$

where λ satisfies $||Ax||_Y \leq \lambda ||x||_X$.

- b) Show if $A \in L(\mathbb{R}^n, \mathbb{R}^m)$, then $||A|| < \infty$.
- c) Let $B(X,Y) = \{A \in L(X,Y) : ||A|| < \infty\}$. Show $||\cdot||$ is a norm on B(X,Y).